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ABSTRACT

One of the most significant challcngcs in large-scale climate modeling, as well as in high-performance

computing in other scientific fields, is that of effectively integrating many software models from multiple
contributors. A software framework facilitates the integration task, both in the development and runtime

stages of the sirnulation. Effective software frameworks reduce the programming burden fl_r the investigators,

freeing thern to focus more on the science and less on the parallel communication implementation, while

maintaining high performance across numerous supcrcomputcr and workstation architectures

This document proposes a strawman framework design for the climate community based on the integration of

Cactus, from the relativistic physics community, and UCLA/UCB Distributed Data Broker (DDB) from the

climate community. This design is the result of an extensive survey of climate models and frameworks in the
climate community as well as frameworks from many other scientific communities. The design addresses

fundamental developrnent and runtime needs using Cactus, a framework with interfaces lk_r FORTRAN and

C-based languages, and high-performance model communication needs using DDB. This document also

specifically explores object-oriented design issues in the context of climate modeling as well as climate

modeling issues in terms of object-oriented design.

An Earth Modeling System Software Framework Strawman Design iii





TABLEOF CONTENTS

1.0 Introduction ................................................................................................................................................. 1

l. 1 Rationale Leading to Choice of Caclus ................................................................................................ 1

1.2 Adaptation of Cactus to Coupled Climatc Modcting ........................................................................... 2

1.3 Usc of the UCLA/UCB Distributed Data Brokcr. ................................................................................

1.4 Perspectivc on Slrawman Framework Design ...................................................................................... 3

1.5 Documcnt Organization ....................................................................................................................... 3

2.0 Review of Components ............................................................................................................................... 5
5

2.1 Cactus .................................................................................................................................................
62.1.1 Cactus Architecture .............................................................. :..................................................

2.1.2 Types of Architccturcs ............................................................................................................. 6

2.1.3 Current Cactus Architecture According to Booth's Classification ......................................... 7

2.1.4 Desired Cactus Architccturc According to Booth's Classification ........................................ 7

2.1.5 Future Cactus Architecture Must be More Object-Oriented ................................................... 7

2.1.6 Cactus Execution Model ............................. .. 8

2.2 Distributed Data Broker (DDB) ................................. 8

2.3 Climatc Models ..................................................................... 9

2.4 Cactus and DDB ........................................................ 9

2.4.1 Diffcrcnces in View ....................................... 9

,_ ,_ 10,.4., Integration of Two Views ........................................................................................................

3.0 Models ...................................................................................................................................................... 10

3.1 Model Definition ............................................................................................................................... I I

3.1.1 Model Requirements Imposed by Cactus ............................................................................... 12

3.1.2 Model requiremcnts imposed by DDB ................................................................................... 13

3.2 Specific Information about DDB ...................................................................................................... 13
14

3.3 Summary ...........................................................................................................................................

4.0 Cactus View of Models ............................................................................................................................ 14

4.1 Development/Compile View ............................................................................................................. 14

4.2 Runtime View. ................................................................................................................................... 15

4.2.1 Model Startup and Execution ................................................................................................. 15

4.2.2 Model Intercommunication .................................................................................................... 16

4.2.3 Data Access ............................................................................................................................. 16

5.0 Models View of Cactus ............................................................................................................................ 17

5.1 Development/Compile Time ............................................................................................................. 17
175.2 Run Time ...........................................................................................................................................

6.0 Cactus View of DDB ................................................................................................................................ 18

7.0 DDB View of Cactus ................................................................................................................................ 18

8.0 DDB View of Models .............................................................................................................................. 19

9.0 Model View of DDB ................................................................................................................................ 20

An Earth Modeling System Software Framework Strawman Design v



I0.0 Model View of Other Models ................................................................................................................. 2 I

IO. I Dala Exchange ................................................................................................................................. 22

I 1.0 Simulation Vicw ..................................................................................................................................... 23

11.1 The Proccss of Running a Modcl .................................................................................................... 23

I1.1.1 Initialization .......................................................................................................................... 23

I I.I.2 Time Evolution ...................................................................................................................... 24

11.1.3 Output .................................................................................................................................... 24

I I. 1.4 Varying paramctcr files ......................................................................................................... 24

11.1.5 Intcrchangcability ................................................ ................................................................. 25

12.0 Softwarc Planning .................................................................................................................................. 25

12. I Software Engineering Plan for Development of the Framework .................................................... 25

12.1.1 Requirements Definition ....................................................................................................... 26

12.1.2 Framework Architectural Model and Interface Methcv,.ls ...................................................... 26

12.1.3 Proposed Development Plan and Schedulc ........................................................................... 26

12.1.4 Suggested Engineering Tools and Development Environment ............................................ 26

12.2 Software Organization Plan for Integrating New Codes ................................................................ 26

12.2. I Integration of DDB ............................................................................................................... 26

12.2.2 Integration of Other Codes .................................................................................................... 26

12.3 Examplc of Code Conversion ......................................................................................................... 27

Appendix A--DDB Application Programming Interface .............................................................................. 29

Appendix B----Cactus Conliguration Files and Parameter File Used in Solving
3-D Scalar Wavc Equation ....................................................................................................................... 3 I

Appendix C--Bridging thc Gap Between Climate Modeling and Object-Oriented Design ......................... 33

References ..................................................................................................................................................... 51

Acronyms ........................................................................................................................................................ 55

vi An Earth Modeling System Software Framework Strawman Design



Figure1:
Figure2:
Figure3:
Figure4:
Figure5:
Figure6:
Figure7:
Figure8:
Figure9:
Figure10:
FigureI1:
Figure12:
Figure13:
Figure14:
Figure15:
Figure16:
Figure17:
Figure18:
Figure19:

LIST OF FIGURES

Integrated Model of the Earth System for Decadal Climate Prediction .................................. 1

Adaptation of Cactus to Coupled Modeling ............................................................................ 3

Three System Components That Must Bc Brought into Harmony ......................................... 4

Seven Views Among Components Plus Simulation View ....................................................... 4

Programming Language Evolution (See Booth Chapter 21 .................................................... 6

Cactus Multi-processor Execution Model ............................................................................... 8

Canonical DDB View of Processors/Model Execution Space ................................................ 9

Cactus + DDB Combined View of Processor/Data/Execution Spaces ................................. 10

A Model: State + Functions to Operate on State ................................................................... 11

Cactus View of Models .......................................................................................................... 14

Process of Starting Up Models ....................................................................... ."...................... 15.

Model Intercommunication Process ...................................................................................... 16

How DDB Would Look To Cactus ........................................................................................ 18

DDB View of Cactus ............................................................................................................. 19

DDB View of Models ............................................................................................................ 19

Model View of DDB Within Cactus ...................................................................................... 20

Data Exchange Between Two Models Using Driver Thorn .................................................. 23

Process of Running a Model .................................................................................................. 24

A Model Decomposed into Sub-Models ............................................................................... 26

Table A- I :

Table A-2:

Table A-3:

Table A-4:

LIST OF TABLES

DDB MCLStartMetaRegistration Function Parameters (See 126]_ ...................................... 29

DDB Parameters for MCLMetaRegister, MCLRcgisterPrtnluce, and

MCLRegisterConsume Functions (See 126]) ........................................................................ 29

DDB Parameters for LILRegisterCoordinates (Sec [3011 ..................................................... 30

DDB Parameters for LILRequestlnterpolatedDala (Sec [30]) .............................................. 30

An Earth Modeling System Software Framework Strawman Design vii





1.0 Introduction

This strawman design document is a sequel to the Preliminary Design Briefing [1_]that provided the

rationale for selecting Cactus [2] as the framework substrate for the strawman design. The ultimate

goal is to support complex Earth science modeling simulations, such as that shown in Figure I (see

[3]), with numerous participating models in a manner where complex model interactions are

supported by a common framework, but v_'here models are developed independently by the scientists.

Global Climate modeling

I

I

Physical Climate Systems I

=_ Atmospheric Physics/Dynamics

/ fl 1# tl f

It ti

LJ) it ti ' I" t!
D _ I Tropospheric Chemlltry J'--_ il

Biochemical Cycles _,, i i
I

I

1
Integrltsd Model of the Earth System for Oeclidml Climate prediction

m_::='l [li v • :4=ii------li-" = Interaction I

Figure 1. Integrated Model of the Earth System for Deeadel Climate Prediction

1.1 Rationale Leading to Choice of Cactus

We thought deeply about framework characteristics and climate community needs before deciding

on a direction to take. One of the results of this thought process is the thought piece "Bridging the

Gap Between Climate Modeling and Object-Oriented Design" (included in appendix C), which

considers framework issues from two different perspectives. This thought process helped us develop
a rationale for what a framework should do. The rationale [1] used to arrive at the choice of Cactus

for the framework substrate is straightforward. Many key features required for a robust framework
(like modularity, encapsulation, and data abstraction) are essentially object-oriented in nature.

Though many practical and viable framework solutions exist in newer object-oriented languages

such as C++, their support for FORTRAN is weak to nonexistent. However, there is relatively little

desire among the modelers to move away from FORTRAN. Furthermore, creating an exclusively

FORTRAN language-based solution makes expression of these abstractions difficult due to lack of a

robust data model (even in F90). This results in a system that either doesn't effectively provide the

needed capabilities or requires great skill to simulate them. Such a result is essentially the same as

not providing them at all from the modeler's perspective. Thus the problem becomes one of either

applying extreme skill to design a framework in a less capable language (FORTRAN) or of finding a
way of creating a multilanguage development environment that provides a mechanism to apply

critical object-oriented techniques in selected framework areas. The latter choice is more viable in

our opinion. The latter choice is in fact the solution that Cactus offers.

An Earth Modeling System Software Framework Modeling Design 1



Cactusisanaturalframeworkcandidate,havingbeenspecificallydesignedtoaccommodatemultiple
languagemodulesusingaconsistentinterfaceandhavingamultiyeartrackrecordof usein the
relativisticastrophysicscommunity.Thedevelopmentenvironmentaspectof Cactusisalso
appealingbecausetheissueof manuallydealingwithmultiplelanguagesonaregularbasiswithout
suchatoolcouldbeloathsometomanymodelers.In additiontothemultilanguagecapabilities,
strengthsof Cactusalsoinclude:

1. Standardizedinterfacestonumerouspackages.
2. Built-inscheduler.
3. Maturity.
4. Ability torunonmanyplatforms.
5. Portabilityfromsingleprocessortomultiprocessorplatforms.
6. Scalabilityonawidevarietyof parallelandvectorarchitectures.
7. Anexistingusercommunity.

Thusthesereasons,amongothersdescribedinmoredetailin thePreliminaryDesignBriefing[1],
ledto thechoiceof Cactus.

1.2 Adaptation of Cactus to Coupled Climate Modeling

Having selected Cactus as the framework substrate, the next issue becomes one of how to adapt it to

the task of climate modeling, such as is shown in Figure 1. The current Cactus concept is roughly

described as one in which a global data structure is distributed in domain-decomposed fashion across
multiple processors and in which functions, called "thorns," are given selected access to the data and

are scheduled to operate upon it using a prescribed sequence controlled by the Cactus scheduler,

which is part of the Cactus "Flesh."

Though Cactus has many advanced I/O capabilities and interfaces to other packages, the primary

effort becomes one of developing within the Cactus framework a concept suitable for coupled
climate modeling [4]. This concept calls for distinct models, each with their own grid system, and

the ability to couple and share data at regular time intervals.

This adaptation is illustrated in Figure 2. The figure on the left shows the current single-grid Cactus

concept where multiple thorns controlled by the scheduler operate on a single block of gridded data.
The figure on the right shows a multigrid Cactus concept, where multiple grids of data (A,B,C) are

operated on by thorns controlled by the scheduler and where the scheduler also schedules coupling

of information between the grids.

1.3 Use of the UCLA/UCB Distributed Data Broker

To accommodate the coupling need we have chosen to consider the UCLA/UCB Distributed Data

Broker (DDB) [5], a set of libraries written in C and C++ which implements data exchange and

interpolation in a multiprocessor simulation system without the use of a focal communication

processor, such as is used in the National Center for Atmospheric Research (NCAR) Flux Coupler

[6] [7_]. In addition to this, other strengths of DDB include:

I. General-purpose interfaces.

2. Implementation as a library, which facilitates installation into Cactus.

In this strawman design DDB implements the coupler concept shown in Figure 2.

2 An Earth Modeling System Software Framework Strawman Design



Thorns
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Figure 2. Adaptation of Cactus to Coupled Modeling

1.4 Perspective on Strawman Framework Design

Our perspective on proposing a strawman framework design for the climate community focuses first

on the need for object-oriented technologies to solve the current modeling complexity problems,

second, on how to integrate modules incorporating these technologies in a multilanguage

environment, third, on simplifying the development of such capabilities using an established

development tool (Cactus), fourth, on the integration of coupling capabilities (DDB is an example of

a module with coupling capabilities) which will adapt the tool to climate modeling needs, and fifth,

on the issue of simplifying the porting of existing modeling code to the new framework, Issues

regarding specific toolkits, subroutine packages, or choice of models are not addressed here but are

left to the modeling community. Our perspective has been influenced by the work of the Common

Modeling Infrastructure Working Group (CMIWG) [8] [9], by the NASA Cooperative Agreement

Notice (CAN) [10], and by an article by Eric Raymond [11], all of which suggest that the greater

community should have as much choice and involvement in these issues as possible. Thus our goal in

proposing this design is to take three elements, Cactus, the Distributed Data Broker, and the climate

models, and bring them into harmony, as shown in Figure 3, with three layers in a simulation system.

1.5 Document Organization

To present and evaluate this harmony, it is important to look at the system from many different views

and perspectives. In this document we have chosen eight views. Each view provides a perspective of

how the entire system works together and provides a backdrop for addressing specific design issues.

These eight views are illustrated in Figure 4 and are listed below.

An Earth Modeling System Software Framework Modeling Design 3
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Figure 3. Three System Components That Must be Brought Into

Harmony.
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Cactus

Models

m.
r

DDB

Figure 4. Seven Views Among Components Plus Simulation View
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1. Cactus View of Models

2. Models View of Cactus

3. Cactus View of DDB

4. DDB View of Cactus

5. DDB View of Models

6. Models View of DDB

7, Models View of Other Models

8. Simulation View

This design document includes contributions and comments from multiple participants in the Cactus

and DDB teams. It begins by briefly introducing Cactus and DDB and then proceeds with each of

the eight views, providing a perspective of how the components relate to each other, and noting what

design work and implementation changes are necessary to bring this about. Throughout the text are

interspersed sequentially numbered design "Notes." Each note represents a potential additional

design effort that is needed to develop a complete system.

Our perspective is that the purpose of this strawman design is to encounter and examine a variety of

framework design issues before a more detailed development effort is begun by the winner(s) of the

NASA Earth System Modeling Framework (ESMF) Round 3 Cooperative Agreement Notice I[H_Q].

This design, which addresses many difficult issues, can then serve to increase the probability that an

effective climate-modeling framework is developed and make the ultimate goal of simulating highly

complex global systems a reality.

2.0 Review of Components

This section provides an overview of the three major components of the strawman design that were

identified in Figure 4: Cactus, DDB, and models.

2.1 Cactus

There is a substantial amount of documentation about the Cactus framework [2_] [12] 1[.1_3].Detailed

information about Cactus operation is found in these documents and is not described here. As

discussed in the introduction, Cactus was chosen as the substrate for the strawman framework design

because of its excellent multilanguage integration capabilities [!]. Notwithstanding, Cactus still

currently lacks several functionalities that are necessary for complete climate modeling framework

functionality. These issues are currently being addressed by the Cactus team. Tom Goodale [14],

John Shalf [15], Gabrielle Allen [16], and Ed Seidel [17] are the POC's for most of these issues.

Note 1: Cartesian Grid Upgrade to Support Latitude/Longitude Grids

Cactus supports many coordinate systems but currently lacks one that is specifically geared

to latitude�longitude. Tire team is planning to modi[3.' the CARTGrid3D Cartesian grid

module to have latitude�longitude capabilities. This is a small change and will be

implemented soon.

Note 2: Upgrade of Cactus Messaging Layer

Cactus currently has a messaging layer that implements tire Message-Passing Inter]_we
(MPI) [ 18]. The Application Programming Interface (API) to the messaging layer is stable
and may be used. The Cactus team is contemplating additional messaging functions to be
added in the.]uture. AI O' messaging work should be closely watched and considered in

conjunction with work done on DI)B.
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2.1.1 Cactus Architecture

As illustrated in Figure 2 and Figure 3, Cactus has two primary computational elements: flesh and

thorns. The flesh is the master controller and contains the thorn scheduler. The thorns themselves can

be considered functions, one or more of which can comprise models which operate on the global

gridded data, as shown on the left side of Figure 2. In addition to the flesh and the scheduler, Cactus

also has an infrastructure, such as is illustrated in Figure 3, that includes critical thorns such as a

"'driver thorn" and other auxiliary thorns. A Cactus driver thorn handles the management of grid

variables, including assigning storage, distribution among processors (i.e., decomposition), and

communication. Nevertheless, there is currently no formalized concept for "model" in Cactus which

includes both unique gridded data and functions to operate on that data, corresponding to the term

'+object" (or "class" if it is a type that can be instantiated multiple times) as defined in object-oriented

texts, such as that by Booch [19].

2.1.2 Types of Architectures

Figure 5 illustrates the concept of programming language evolution as described by Booch in

Chapter 2. This sequence of diagrams shows the evolving programming concept represented as a

series of topologies.

• Figure 5(a) shows the topology of early first- and second-generation programming languages.

This topology shows a global data space with a variety of subprograms operating within it.

• Figure 5(b) shows the topology of late second-generation languages and early third-

generation languages. This topology shows the same global data space but the subprograms

each having their own set of subroutines, thus subdividing the functionality.

• Figure 5(c) shows the topology of late third-generation languages. This topology partitions

the data space into separate modules that are associated with one or more subprograms.

• Figure 5(d) shows the topology of object-oriented languages. This figure completes the

partitioning begun in Figure 5(c). Each module now has its own data and subprograms. The

tanguage deals with the interaction between the modules. The name for a module with data

and subprograms is ".object" or "class."

Data

Subpr_j_

(a) Topology of Early 1-G and 2-G

Languages

Modules

im++to,uo,+ i
(clTopology of Late 3-G Languages

Data

(b I Topology of Late 2-G and

Early 3-G Languages

<_ Modules with data

"_.-_--'I & subprograms:

_-_1 "Objects"

(d) Topology of Object-Oriented

Languages

Figure 5. Programming Language Evolution (See Booth Chapter 2)
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2.1.3 Current Cactus Architecture According to Booch's Classification

Figure 2 shows, with the Single Grid Cactus Concept, the kind of modeling system that Cactus

currently has, which corresponds to Figure 5(c) if thorns are considered as modules. The single grid

concept shown in Figure 2 is insufficient for the type of modeling shown in Figure 1. This type of

architecture is that found in third-generation languages.

2.1.4. Desired Cactus Architecture According to Booch's Classification

Figure 1 shows the kind of modeling system that is ultimately desired: numerous domain models

interrelating to create a larger model of a more extensive system. Figure 2 shows an upgraded multi-

grid concept that is more similar to Figure I and Figure 5(d). This is the type of architecture that

Cactus must have to support coupled climate modeling. This type of architecture is more similar to

that found in object-oriented languages.

Non-object-oriented languages, such as FORTRAN, can certainly have modules and multiple grids

with functions operating upon them, and communications between the modules, thus giving a similar

appearance to Figure 5(d). Nevertheless, the number of possible intercommunication paths may

increase exponentially in proportion to the number of modules. In object-oriented languages the

communication is built into base objects and distributed via inheritance whereas in conventional

languages it must be coded into each module. Thus it provides better control over the communication

mechanism used by the modules.

2.1.5. Future Cactus Architecture Must be More Object-Oriented

To support the kind of comprehensive coupled Earth modeling described by Meehl [4], and

performed by major research laboratories including NCAR [20], Geophysical Fluid Dynamics

Laboratory (GFDL) [21], Data Assimilation Office (DAO) [22], National Centers for Environmental

Protection (NCEP) [23], and elsewhere, the ESMF framework must become more object-oriented,

because that is clearly the nature of coupled systems shown in Figure 1 and Figure 5 (d) where each

system has state and function. This is clear from both diagrams.

At the same time the irony of the situation is that though numerous object-oriented languages and

frameworks written in those languages exist [13] and are widely promoted by leaders in computer

science such as Booch [19], Fayad [24], and others, these same languages and frameworks are

rejected by the Earth science community because of their inability to easily accommodate
FORTRAN.

Cactus, therefore, is important because it provides the neglected FORTRAN compatibility.

Nevertheless it too must migrate in an object-oriented direction, such as from Figure 5(c) to 5(d),

where the data or state is clearly associated with each model, to accommodate the ever-increasing

complexity of the climate simulations shown in Figure 1. This migration path includes at least two

key concepts: support for multiple grids and development of a structural software concept which

corresponds to "model," which is greater than "thorn."

Note 3: Cactus Upgrade to Support Multiple Grids

The Cactus team is working to develop a multiblock (multigrid) capability for release 4.1, to
be released in the near future. This capability is required before multimodel climate
modeling can begin. This capability allows multiple elimate models to operate on different
grids whereas nort; only one grid is allowed in Cactus. This is a significant chwTge but the
Cactus team has been planning it for some time, prior to finding out that it was needed by
ESME because some oJ'their ptr_jeets oeed this capability as well.

An Earth Modeling System Softwarc Framcwork Modeling Dcsign



Note 4: Development of Standard Model Concept Similar to Object

A standard concept _[a "model" needs to be developed in terms of thorns that is suitable.lot

climate modeling.

2.1.6.Cactus Execution Model

The Cactus multiprocessor execution model is shown in Figure 6. Presuming that Cactus data is

partitioned into multiple grids (each grid is shown as a box), the figure shows each processor

containing multiple grids and executing thorns (circles) in sequence under the control of the

scheduler. Each processor can access the data on multiple grids. Each time, a processor performs a

calculation on the data from a portion of one grid.

•.om
•.orn
•,',or,-,

Proc 1 Proc 2 Proc 3 Proc 4 Proc 5 Proc6

Time • 0 0 • 0 0 @ 0 0 @ 0 0 • 0 0 • 0 0

@0 0 @0 0 @0 0 @0 0 @0 0 @0 0

Figure 6. Cactus Multiprocessor Execution Model

2.2 Distributed Data Broker (DDB)

Some documentation is available for DDB [5] [251 [26] [27] [28] [29] [30] [,3__!.1][32]. Individuals

who are currently providing some design support for DDB integration into Cactus include Tony

Drummond [__3_]and John Shall [l_. According to John, DDB was primarily designed to provide a

communication layer for interpolation between essentially independent codes (codes with different

data layout, even different communication layers). It does not handle boundary updates or data

domain decomposition within a given application. That is the application's responsibility. Codes

simply describe their data domain (mesh resolution and how the data is distributed across processors,

etc.), what sorts of interpolation operations they want performed between different grids, and when

these interpolations should occur. These characteristics make it an excellent fit for Cactus.

Nevertheless, there is some work that has to be completed before it can be fully integrated.

The canonical view of the processor/data space for DDB in current usage is that of several

independent parallel applications which need to exchange data periodically in order to couple these

independent simulations. The different simulations may well use a different number of nodes and

have entirely different data layouts. DDB operates in a distributed fashion to facilitate interpolation

between the computational domains of these independent simulations. This requires a lot of tuning of

the number of processors and the step-sizes used by these different simulations so that they will be

load-balanced as they execute. If one simulation lags very far behind the others, then it will require

that many processors be idle to wait for information from the slower model. Regardless, DDB is

running in a distributed manner and managing interpolation between codes which are running

simultaneously. This view is illustrated in Figure 7.
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Figure 7. Canonical DDB View of Processors/Model Execution Space

Note 5: Adaptation of DDB Messaging Layer

Tile current vershm of DDB uses Parallel Virtual Machine (PVM), which is outdated, A

newer version (?]I)DB that has not vet heen puhliely released uses MPI [18]. This newer

release can be obtained from Tony l)rummond [33]. This is the version that should be used.

I)DB has a veo_ Jlexible messaging layer that is properly insulated from the rest of the

module. When integrated into Cactus, DDB should be further changed to use the Cactus

messaging layer. This would not only synchronize DDB with Cactus and make them

completely compatible, but would also allow alI J_rther n._essaging upgrades to take place

via Cactus with no.ficrther, work required on DDB.

2.3 Climate Models

Examples of climate models include ocean, atmosphere, land, and ice, to name just a few, and have

been extensively surveyed [34]. The purpose of this strawman framework design is to facilitate the

exchange of information between framework-compatible models. However, the framework is not

limited to these components. The framework would also permit lower-level models such as a

dynamics core, radiation model, cloud model, etc., so long as these models conform to this design.

2.4 Cactus and DDB

2.4.1 Differences in View

Cactus and DDB have a different philosophical basis with respect to processor allocation, as is

shown in Figures 6 and 7. It is important to properly understand these views to understand how the

two pieces can be integrated.

The Cactus view, in Figure 6, is that the global data grid of each model is distributed across the

entire processor space in domain-decomposed fashion. Each thorn, after it is loaded, runs distributed

across all of the processors, but the thorns themselves are scheduled to run sequentially in time-

sliced manner on each node processing their own local subdomain of the global data grid. In the

diagram, thorns correspond to models and each model has its own data or state, represented by the

color-coded cubes inside each processor box. Each processor, as the thorns are run sequentially, will
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be seen to be operating on different parts of the data in sequence, as shown by the color coded dots

below the processor boxes. Each thorn corresponds to an application model.

The DDB view, on the other hand, is that the processor space is partitioned according to model and

each model is distributed across the processors in its partition. Figure 7 shows three models

distributed across 6 processors, with two processors per model. Each application or model (such as

ocean, atmosphere, etc.) is spread across multiple processors.

2.4.2 Integration of Two Views

The combined view of Cactus and DDB is shown in Figure 8. Inside of Cactus, a model can have a

different grid domain and domain decomposition (this capability is supplied by the Cactus

multiblock extensions). However, each model will occupy the same set of processors as all other

models and run in sequence (a round-robin time-slicing). In this situation DDB will be interpolating

between models that are running sequentially rather than simultaneous/independent simulation

codes. This is not a big problem since the DDB uses asynchronous communications mechanisms (as

does Cactus). DDB communication remains distributed though (just as it does in the canonical case)

as does Cactus (Cactus boundary synchronizations are done in distributed fashion. There is no

"master" processor used for managing the boundary synchronizations or data storage).

One advantage of the Cactus execution model is that it is no longer necessary to carefully tune step-

sizes and processor allocation in order to keep the execution of a multiphysics code load-balanced.

The time-sequential scheduling of the models ensures that the entire code is closely load-balanced as
well as memory-balanced. Also, each code can operate with a different/optimal step-size and the

switching between codes is governed by simulation time rather than the step-number of the
individual models.

Cactus + DDB Interpolation Communications

I I I I I

ThornAi'[___'__[___'

Thorn q?::._]::E" ._'YDi:_t:_-_]::t_':_']:

Thorn Cr.'_.['_[['_'_.[[ _'

Proc 1 Proc 2 Proc 3 Proc 4 Proc 5

Time ® Oo • Oo OOo COo • Oo

,_, @00 O00 OO 0 000 O00

Proc6

O0 o

O0 o

Figure 8. Cactus + DDB Combined View of Processor/Data/Execution Spaces

3.0 Models

A clear definition of "model" is important to understanding all other aspects of this design. A well-

designed framework will minimize the focus on the framework mechanics and provide greater

capabilities for interrelationships between models. The basic perspective of a model, as shown in

Figure 9. is that it has two primary components: state and functions. The state corresponds to the

data and the functions are subroutines that operate on the data. This section defines more clearly

what a model is in terms of basic operating characteristics.
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Figure 9. A Model: State + Functions to Operate on State

3.1 Model Definition

The following model definition has been primarily derived from DDB capabilities. The reasoning for
these definitions will be described later in this section.

!. Each model has a unique name.

2. A model consists of a set of subroutines that operates upon a single three-dimensional grid.

3. The grid has longitude and latitude corresponding to the X and Y axes and altitude/depth

corresponding to the Z axis.

4. The grid can have irregular spacing of the elements in X, Y, and Z, so long as the spacing can

be specified in a separate array for each axis.

5. The grid can have any number of variables associated with the grid elements.

6. The variables on the grid can be either scalars or vectors and all can be of differing data

types.

7. Each variable has a unique name.

8. Variable values can change as a function of time.

9. An update period is associated with each variable.

10. Each variable can have a unique update period.

1 I. The values of all grid variables at any particular instant of time are referred to as the model

state.

12. The model state is presumed to change as a function of time according to the operations of
the model subroutines.

13. A model, via subroutines, only operates on its own state, to change its own state, and cannot

operate to change the state of any other model.

14. A model has the capability to provide snapshots of its state upon request.

! 5. A snapshot consists of some or all of the variables for some or all of the grid elements for a

particular instant in time.

16. A snapshot can be provided to other models via the framework.
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17. Modelscanusesnapshotsfromothermodelstochangetheirboundaryconditionsandto
updatetheirownstate.

3.1.1 Model Requirements Imposed by Cactus

Model requirements imposed by Cactus include the following:

1. A model may be implemented in either FORTRAN 77, FORTRAN 90, C, or C++.

2. Each model must have a Cactus-compatible software API, consisting of one or more

subroutines that are implemented using Cactus technology and function protocols.

3. Each model must be packaged as a Cactus "thorn" so that Cactus can assemble and compile

it into an executable. The manner of constructing a thorn, in general terms, is described in the

Cactus User Guide [35].

Note 6: Development of Automated Tool for Thorn Conversion

It is likely that many models are similar in characteristics and that many modelers would

have similar experiences in converting models into thorns. It might be possible to develop

an automated tool that would partially reduce the burden of thorn conversion.

A analogous situation to this occurs in scripting languages such as PERL [36] and Python

[37] where developers want to write fast code in the "C" language but link it to PERL,

which is an interpreted system. It is generally necessat T to manually rework the interface

so that PERL._itnctions can call "C" routines. Nevertheless, special purpose tools such as

SWIG [38] (Simplified Wrapper and Interface Generator) automatically develop interface
glue code to assist developers in linking PERL to "C." In the same vein it might be

possible to construct a tool that would assist modelers in converting their existing models
into Cactus thorns, though it wouldn't completely eliminate work on their part.

In this wa3; the Cactus framework would appeal to a greater number of modelers because

it would be easierJbr them to convert their models to use the system, even if it provided

only a partial conversion. Thus, an automated tool for thorn com,ersion could be a

valuable part of a new framework.

4. Cactus Configuration Language (.ccl) files must be created for each model. To be

more precise, each model must be decomposed into one or more thorns, and special
Cactus files must be created for each thorn. The Cactus files are used to declare all

variables and grid functions associated with model state and contain information for

parameters, grid functions, and schedule.

5. Any model capability (e.g., data) that is to be distributed across multiple processors

must be declared through Cactus mechanism. Thus, a model should not attempt to

maintain internal state information separately unless this capability isn't to be

distributed. This restriction allows Cactus to assume the role of semi-automatically

distributing the model across multiple processors. The distribution is automatic if the

user only specifies the number of processors. If special partitioning is required then

the user must first declare the domain decomposition in the thorn parameter files.

Cactus cannot distribute any capability that it is not aware of via declaration in these

special files. To convert a model that already has parallel implementations into a thorn

or thorns, a user has to replace the existing parallel implementation with Cactus

equivalents.
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Note 7: Development of Mechanism for Processor Allocation/Scheduling

It has become customary for some of the climate simulations (such as those at

NCAR 120]) to allocate a d_ff'erent number of processolw per model and then run all

of the models simultaneously: By allocating the processors according to the .speed of

the model the models can all finish each step at approximately the same time and

then pelform the coupling operathm amongst themselt,es whh'h allows them to

ptvceed to the next stage. The adjustment of the number of processors" pet" model

reduces waiting time where one model is waiting for the other to complete so that

coupling may take place. With#7 the Cactus framework these requirements will be

relaxed somewhat because the Cactus scheduler will be executing the models in

time-sequential fashion eliminating load-balancing issues. Therefore, each model

will be able to run with its own optimal Courant factor (optimal timestep) and the

models can be kept in sync with respect to simulation time b_' offering a larger

timeslice to slower models. Any new processor allo('atiot_'cheduling mechanism

should be an extension of this concept.

3.1.2 Model requirements imposed by DDB

The previous model definition is derived from DDB capabilities. For this design, a model definition

must be derived from DDB capabilities since DDB, embedded in Cactus, is the primary means of

coupling between models. This design does not allow for back-alley communication between

models, as that would defeat the concept of the framework. Therefore, a model that can't interact

with DDB can't easily share data with other models in the simulation. In this light, the DDB

strengths and limitations define the characteristics of what can be considered a model for simulation

purposes. If DDB isn't flexible enough to work with what is currently considered a model, then DDB

must be expanded to accommodate that scope. The model derives its basic structure and pattern from

the coupler that enables models to share data with other models.

Note 8: In-Depth Model Survey

It might be useJid to determine which of the models in the task 2 sura,ey [34] cannot be

reasonably adapted to DDB. It is our current expectation that DDB is sufficiently flexible to

accommodate most, if not all, _f'these models.

3.2 Specific Information about DDB

The DDB capabilities are primarily defined through registration calls. The DDB mode of operation

is such that once the models are registered DDB facilitates sharing of data at periodic intervals. Since

no new modes of data sharing are initiated after a registration call, it is the registration call, or more

specifically the parameters that are passed as part of a registration call, that define the boundaries of

the types of models that DDB can work with.

The things that can be operated on by DDB are tletermined by the DDB registration call. The DDB

registration consists of two sets of calls, the first defining the grid configuration and the second

defining the variables. Specific DDB information is contained in tables in the appendix. These two

sets of function calls define the boundaries of what can be considered a model.
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3.3 Summary

All current existing models that have or can have the characteristics described above and which can

supply the type of information required by DDB in Tables I through 4 in the appendix can couple

with other models in the Cactus system. Therefore all such models are candidates for this type of

framework approach.

4.0 Cactus View of Models

  .  .ICACTUSl

Figure 10. Cactus View of Models

Because Cactus is both a development environment and a runtime environment there are two

separate views of models:

1. Development/Compile-time: As modules called thorns which Cactus compiles to produce an
executable.

2. Runtime: As runtime entities which it schedules and runs.

The Cactus view of models is illustrated in Figure 10 and described in more detail in the following
sections.

4.1 Development/Compile View

The development view of the models from a Cactus perspective includes the following ideas:

1. Each model is organized into a thorn/assembly package.

2. Core models, if used, can be obtained from a central repository via Concurrent Version

Systems (CVS). That process is external to this design document.

3. Modelers can also supply their own models.

4. Different models are incorporated into the package to be compiled as selected by the
modeler.

5. Cactus provides a mapping mechanism that allows for virtual function names. This allows
names to be selected which map to specific function names in a thorn. That way different

thorns can swap in and out with functions named differently but from a Cactus perspective
the names remain constant.

6. Cactus is used to compile the executable.
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4.2 Runtime View

From a runtime perspective, Cactus is involved in the following activities and must have a

perspective for each:

I. Runtime parameter file reading.

2. Model startup.

3. Model scheduling.

4. Model intercommunication.

5. Data access.

4.2.1 Model Startup and Execution

Figure 11 illustrates how a model starts up in the Cactus framework. First the flesh reads in a
parameter file (with suffix .par) and parses it ( 1) and gives it to the Thorn Activator (2). There is only

one parameter file for a simulation which is constructed from all of the parameter files of the

individual thorns. The parameter file specifies which thorns are used, the number of grid points,

initial data set for evolution equation solver, frequency of data output, format, and so forth. The flesh

activates thorns corresponding to driver thorn, atmosphere, ocean, and others (3). The flesh then calls

the startup routines (5). Thorns may overide several flesh functions, including schedule traversal
routines.

-- l

9)

O) mm
J , (4)

Figure l 1. Process of Starting Up Models

Note 9: Extensions to Param.ccl file to Support DDB

It is possible that DDB may require some model information that is not currently specified in
tile parameter.file, hr such cases, an extension to the parameter file format would be
necessar 3' to accommodate these types of changes. This work would be conducted by the
Cactus team.

Note 10: Registration of Model Thorns with DDB

Based on ttre inJormation provided in param.ccl, DDB can create a mapping table to register

ttre model thorns with DDB. Some design work is necessap T to determine exactly how this

would be done and which interfaces are used. At this moment we think that DDB's Model

Communication Librao' (MCL) [26] can be done in model smrtup. DDB's Communication

Librap 3" (CL) is replaced with Cactus's and I)ata Translation Librar 3' (DTL) is used during

data exchange.

An Earth Modeling System Software Framework Modeling Design 15



Note 11: Enhancement of Scheduler Via Scripting Language

As an alternative to developing a Coupling Scheduling Thorn, the Cactus team is currently

working to upgrade the scheduler with more advanced capabilities, such as might be found

in a scripting language.

4.2.2 Model Intercommunication

Model intercommunication is handled by Cactus's driver thorn, using DDB functions. Figure 12

shows the model intercommunication process for coupling an ocean thorn with an atmosphere thorn.

The ocean grid and atmosphere grid information is needed for a driver thorn to gather data from one

subdomain of the atmosphere grid, interpolate, and send it to the corresponding subdomain of the

ocean grid. This information, provided in the so-called registration in DDB (see Tables 1--4 in the

appendix), can be included in the param.ccl of each thorn. During compilation, these two param.ccl

files, denoted with slabs, are parsed by Cactus's Flesh (1) (2). In the figure, dashed lines are used to

indicate these processes occur during compilation while solid lines are for runtime. Cactus needs to

add a capability to take the grid information listed in Tables I and 2 out of param.ccl files and

provide this information to the driver thorn (3). With this information, DDB can create a mapping

table between the subdomains of the ocean and atmosphere grids. Based on this mapping table, send

and receive operations of both the atmosphere and ocean grids can be coordinated so that the data

subdomain of atmosphere grid can be sent to its corresponding subdomain of ocean grid, and vice

versa. When the ocean thorn needs data from the atmosphere thorn, it sends a request to the driver

thorn (4). The driver thorn responds to the request by sending the data in the memory storage for

atmosphere grid to the memory storage for the ocean grid (5). After transferring the required data,

the driver thorn sends the confirmation messages to ocean thorn (6). A similar process occurs when

the atmosphere thorn requests data from the ocean thorn.

(1)

I _ Ocean

I

Flesh

Parser (2) ]
Atmosphere

_r_ Driver Thorn

(Cactus+DDB)

(3) (5)

I '

Figure 12. Model Intercommunication Process

(4)

_6)

4.2.3 Data Access

Models intercommunicate according to the arrangements they have made with DDB. Models are free

to read other files as needed using either the input/output (I/O) thorn or their own means.
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5.0 Models View of Cactus

This section describes how models view Cactus. There are two perspectives: development/compile

time and runtime. Both perspectives are described here.

5.1 Development/Compile Time

The development time view of Cactus from a model perspective is that it must be reconfigured as a

Cactus thorn before it can be compiled into the system. This conversion, as described in the Cactus

User Guide, involves several steps:

1. Packaging the source code into a "thorn" directory structure.

2. Partitioning of the subroutine methods and the model state information such that the state
variables can be +'handed over" to Cactus.

3. Modification of the top-level subroutines to accommodate special Cactus identifiers. (This is
also referred to as the Model/Cactus API.)

4. Creation of interface, parameter, and schedule (.CCL) files for each thorn.

5.2 Run Time

The runtime view of Cactus from a model perspective is that Cactus is the master scheduler and

"owner" of all of its state data. The model, like an employee in a company office, no longer owns the
state data that it works with in the same sense that it did before it became involved with the Cactus

system. Prior to Cactus, each model was the master of its own universe and the office boss. It created

its arrays, filled them with data, performed operations on the data, sent them to files or other models,

wrote them out when complete, and then died a peaceful death. In contrast, in the Cactus world data
ownership is associated with data creation. This means that the one who creates the data owns the

data. The model thorn, having specified all of the state data information needs in the CCL files is

dependent on Cactus to create the data arrays and pass them to the model to operate upon.

In the new world Cactus is the creator and the memory allocator. Cactus is owner of all of the data.

Cactus is responsible for the reading-from files, the writing-to files, and all other data manipulation

tasks, When the time is right, Cactus fetches the data and says to the model, "Here is your state data.

Please operate upon it." The model obediently operates on the data until it is done, at which time
Cactus assumes responsibility again. In a book on object-oriented framework design by Fayad [24],

this is known as '+inversion of control." Inversion of control means that control is moved away from

the lower level software components and up into the framework. By moving control into the

framework, the framework can assume more responsibility for system-related tasks without

burdening the models and subcomponents. The price for these benefits is that the models must give

up something: full ownership of their state data.

The runtime view of Cactus from a model perspective is this: Cactus effectively says to the model,

"Here is your state data. Please operate upon it." Cactus then supplies the data and calls the

appropriate model functions until the model is finished, at which point Cactus goes to the next

processing stage.
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6.0 Cactus View of DDB

DDB will most likely be integrated into Cactus as an auxiliary infrastructure Cactus thorn though

parts could go in the driver thorn as well. There are several ways to do it but these are the most likely

places. Cactus already has many thorns that are part of the infrastructure. DDB would either be one
more or part of one that already exists, Thus, Cactus would not view DDB any differently than it

would any of its other thorns.

Driver Thorn

DDB Location Currently
Undetermined ....

Auxiliary InlrlMructu[_
I0 Thorn Thorn

I Cactus [

Figure 13. How DDB Would Look to Cactus

Note 12: Enhancement of Cactus Interpolation Function

Cactus currently has an interpolation capability. Nevertheless, it only works Jor a single

grid. Once Cactus adds the multiblock capability it may need a multiblock interpolation

/itnction capabili O" whether or not it is actually adapted for climate modeling. The potential

exists here to generalize the Cactus interpolation module and absorb DDB fitnctionality into

it. Since the DDB messaging layer would have already been replaced by the Cactus

messaging layer this would essentially be the same as absorbing DDB completely into the

t:risting Cactus system, bt such a case, it may not be necessa_" to provide an additional

thorn for DI)B at all (i.e., integrate DDB into a driver thorn instead). This is an issue that

can be studied by the Cactus team.

7.0 DDB View of Cactus

DDB does not need to have a particular view of Cactus, other than implementing a messaging
scheme (MPI) that is compatible with it. As discussed in Note 4, this may be implemented by

adapting the DDB messaging layer. DDB is primarily aware of the models. DDB would view Cactus

as an intermediate agent that assists the models in registering with DDB. Once registered, however,

DDB would deal directly with the model thorns. Thus, DDB would not have to undergo major

changes to accommodate a Cactus view. Since Cactus has some C++ code, DDB could integrate in

using existing development tools. This view is shown in Figure 14.
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DDB Registration DDB Registration
View Without Cactus View With Cactus

Figure 14. DDB View of Cactus

8.0 DDB View of Models

This section describes the view of the models from a DDB perspective where, though DDB has been

absorbed into Cactus, (he comprehensive functionality is still treated as an entity. In the UCLA

implementation DDB was interacting directly with the models. In this design there is now a Cactus

Coupling API between DDB and the models. Nevertheless, this doesn't fundamentally change the

way DDB operates. This perspective is shown in Figure 15.

Cactus coupling API

Figure 15. DDB View of Models

In summary:

!. DDB is aware of models in the same way that it is aware of models without Cactus: The

models register with it (through Cactus) and when they make MCL [26] calls it obtains the
information for them.

2. DDB isn't aware that Cactus is registering the models with DDB.

3. DDB isn't aware of any other MPI or other messaging activity by Cactus.
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9.0 Model View of DDB

This section describes the models view of DDB. In the UCLA system [39] [40] [41] [25] the models

are directly aware of DDB and use DDB function calls to obtain data from each other. Though DDB

is represented as a central broker in block diagram, once registration is completed, it is more

appropriate to think of DDB as a function call that the model uses to obtain data from another model

process. This view persists once DDB is incorporated into Cactus.

UCLA System With DDB Cactus System With DDB

t

Component Representation

Actual Communication

Cactus

t
O

Component Representation

"+._..
+ +

CactusCouplingAPI

Cactus O +
Actual Communication

• Figure 16. Model View of DDB Within Cactus

Figure 16 shows four perspectives of DDB implementation. Two of the perspectives, on the left,

show how DDB is viewed in the context of the UCLA models. From a component perspective each
model interacts with DDB as a broker and DDB interacts with the other models. From an actual

communication perspective, however, DDB is only a function call and a more proper representation

is one in which the models are directly communicating with each other. On the right side, within the

Cactus system, the component representation is about the same. in this case, DDB has been
embedded inside Cactus but it still functions as a central broker. From an actual communication

standpoint, however, the diagram is somewhat different. Since Cactus owns all of the state/data

information for each of the models and supplies it to the models as needed, it is more appropriate to

realize that much of the communication takes place within the Cactus system. The models, shown

with dashed outlines because they no longer "own" or create their data in the traditional sense, still

request information through a Cactus Coupling API. However, Cactus can manage more of the

communication internally using DDB. In comparison to the UCLA system the end result is the same:

each model requests information from another model and DDB brokers the exchange. However, once
DDB is embedded in Cactus that actual data exchange mechanism is different. The models now view

DDB through the window of the Cactus AP1 and more of the data exchange happens internal to the

Cactus system. In summary,
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!. Models are not aware of DDB directly. They communicate with DDB using a Cactus API.

2. Models still need to supply registration information.

3. Models register with Cactus and Cactus registers the models with DDB. This means that the

models need to be able to supply the information that DDB needs but they pass this

information to Cactus instead of to DDB.

Note 13: Implementation of Cactus Coupling API for Models

From this perspective it is clear that a Cactus Coupling API needs to be developed whieh is

similar to the current DDB API [31 ]. Like I)I)B, the Cactus API would involve both

registtzttion and data exchange components. It would also take into account the differences

between how model state itff_wmation is stored in Cactus versus without Cactus. This could

potential O" result in the elhnination of a few parameters from the.fitnction calls', thus

simplff_,ing data e_'change between models.

10.0 Model View of Other Models

This section describes the interaction of models with each other.

1. Core models can be obtained from a central repository. This design does not discuss the

nature of the repository.

Note 14: Establishment of a Core Model Repository

To achieve the kind of model interaction described by the Common Modeling Infrastructure

Working Grotq_ [8/[9] a model reposimr3' needs to be set up independent of Cactus. Models

in the reposito O' would have Caetus interfaces (i.e., thorns). A naming convention would be

established such that every model would have a unique name and different versions of each

model could be made available. Models could be made available using CVS [42].

Note 15: Establishment of a Template Repository

A template reposito_, could be created consisting of thorns that were completely defined in

terms of the inte.rface yet were missing the interior code. Thorns would exist fiw various

model O'pes such as atmosphere, ocean, etc'. Any scientist using such a thorn to start

development would be guaranteed plug compatibility with other thorns that used the same

template.

,

3.

Note 16: Establishment of a Configuration File Repository

As suggested in the Preliminar3' Design Briefing [ 1 ], it might be use.rid to establish

repositories of common model col_gurations. A configuration could either consist o[special

CCL packages for each core model thorn or of initialization datasets or of special Cactus

parameter files. This repositm 3' could be set up and made available via the CVS [42] system.

Each model has a name. The names are used to request services from other models.

Two models with the same name cannot take part in the same simulation.

Note 17: Correction of Name Space Conflicts

Currently, it is not possible to have multiple versions ofthe same model to be compiled into

Cactus because the d_ff'ereut versions have the same ficnction names and this would cause a

name space conflict at link time. This O'pe of problem has been soh,ed in object-oriented

languages such as C+ + because different objects can have identically named member
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functions (or ot)iect methods) and the compiler internally assigns names using name-

mangling techniques. This option is not currently available using the FORTRAN interlace

avaihtbte to Cactus. The Cactus team is looking at ways in which some (_/these limitatiolls

c_m be reduced. Nevertheless, Jbr now only one version t_]'o model with the same ]imction
mtmes can be compiled into an exeeutabh' at the same time. Fgo has some improvements in

the area ¢?['name space conflicts.

4. Since DDB accesses information according to variable name, for one model to request data
from another model it needs to know the names of the variables that it wants.

Note 18: Establishment of Parameter Naming Conventions

It may be too d_ffieult for all the models of a certain type (i.e., ocean models) to insist that the m_Mel

authors all use the same variable names for their variables (i.e., SST = Sea Surface Temperature).

What is needed is a global namespace, to be agreed upon by the modelers, where each phy,sical

parameter has a unique name. This dictionary would be stored in some kind of central repositoJ T

where everyone can access it and add to it. With de/hTed names in place, it would then be necessara'

to develop some lookup tools so that, from an external perspective° each model can request
il_]_rmation from other models using agreed upon names (i.e., SST) but that internally to each model

these names would be translated to the proper variable names (i.e., SeaSurtaceTemperatureArray).

5. Models only interact with each other via a Cactus API.

6. Cactus incorporates. DDB, which is used to supply the data between models.

7. Model interaction with each other is scheduled at registration time.

8. During runtime Cactus supplies each model with coupling information according to the
schedule.

10.1 Data Exchange

In this section it is assumed that elements of the current DDB are absorbed into the Cactus driver,

although that is not the only approach and this issue requires further review. A Cactus driver thorn

handles the management of grid variables, including assigning storage, distribution among

processors (i.e., decomposition) and communication. So the storage of grid variables for ocean,

atmosphere, and transient data are managed by the driver thorn, in contrast to the current DDB,

where an application model owns and manages the grid data.

The Cactus Team plans to implement the multiblock capabilities. In addition, previous DDB

functional calls, such as requesting data and sending data, will be handled by enhanced Cactus

communication functions. The standard Cactus driver thorn is called PUGH (Parallel Unigrid Grid

Hierarchy), which uses MPI for communications. Inside PUGH, there is a thorn called "lnterp,"

which provides interpolation operators for 2-D and 3-D arrays in the case of a single grid. DDB's

interpolation functions, contained in the Linear Interpolation Library, are developed for interpolating

data between two different grids. These functions can be added into Cactus's lnterp thorn through

modification. In the following, we describe how a driver thorn handles data transfer between two

grids using atmospheric and ocean models as an example. This process is depicted in Figure 17.
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Figure 17. Data Exchange Between Two Models Using Driver Thorn

11.0

!. Ocean model thorn initiates the functional call requesting atmosphere data through the
Cactus driver thorn.

2. The Cactus driver thorn, using DDB functions, processes the request using registered grid

information from both ocean and atmospheric models.

3. The Cactus driver thorn issues requests to multiple atmospheric processors.

4. Data is returned and interpolated to match ocean model grid.

5. Data is buffered (via MPI) and returned to the ocean model.

Simulation View

11.1 The Process of Running a Model

Figure 18 shows the process of running a single model within the strawman framework from

initialization to visualization/analysis. In this particular example, the model has been configured as

two thorns: one for initialization and the other constituting the primary part of the model. There is no

requirement that the model be configured this way. A model could be a single thorn. Nevertheless, it

may often be useful (see Figure 19) to have a model composed of several thorn subcomponents
corresponding to logical processing entities or stages (for example, NASA Seasonal to Inter-annual

Prediction Project (NSIPP) Aries has used three stages: initialization, run, and finalization whereas

NCAR's CCM3 has separated initialization from time-stepping). At compile time, three ccl files

(Interface, Parameter, and Schedule) associated .with each thorn are parsed by the Cactus flesh.

11.1.1 Initialization

At run time, the initialization thorn prepares data for the model thorn. The initialization thorn assigns
the initial values to the grid variables (e.g., wind speeds and pressures) at several time sequences

which are determined by the finite-difference solver. Other variables can be initialized inside the
model thorn. A variety of initialization techniques can be employed inside the initialization thorn
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Figure 18. Process of Running a Model

including creating the data from code or reading it from files, such as a checkpoint file from the

previous simulation.

11.1.2 Time Evolution

After initialization, the time evolution of the "model" thorn can start. The model thorn consists of

three major functions: evolution equation solver, boundary for outside world (physical boundary),

and boundary between processors. A user can use an equation solver provided by Cactus or create a

new one. Cactus has functions for some physical boundary conditions such as flat boundary. A user

can also create a new one. The boundary between processors, so-called ghost zone, is handled by

Cactus. A user only needs to specify how many grid points are needed in each direction. During the

time evolution, the model thorn can exchange data with other model thorns via a driver thorn using
DDB's functions.

11.1.3 Output

A user can specify the frequency of outputting the data files. The formats of output files such as 2-D

slice and 3-D data are provided in the parameter file (see Figure I 1 and Appendix B). Those data

files can be analyzed and visualized with freeware software packages such as LCA Vision [43], with

a web browser, or with any available graphics tool such as Xgraph.

11.1.4 Varying Parameter Files

The Common Modeling Infrastructure Working Group (CMIWG) [8] [9_] identified the following
need:

"'A core model should allow a range of options for different physical problems, with

standard configurations defined for operational applications (via resolution and

parameterizations), e.g., medium range forecast, centennial climate scenarios,

seasonal predictions."
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In Cactus this need would be met by allowing the user to vary the configuration files according to the

simulation needs. The potential exists to have multiple configuration files for each thorn which

specify differing resolutions or model configurations.

11.1.5 Interchangeability

There is another useful feature in the Cactus framework: Any thorns with the three identical ccl

configuration files are exchangeable. For example, an atmosphere model in GFDL written as a thorn

can be replaced by the atmosphere model in NSIPP written as a thorn if these two thorns have the

same configuration files. This capability addresses another need specified by the CMIWG:

"More than one core model is specifically called for ... because many systems are similarly

skillful but give different results. Experience of weather forecasters and with climate

simulations has shown that the variety of results produced by several models is beneficial in

interpreting those results for the problem at hand, and for giving the best forecasts through

ensemble averaging."

12.0 Software Planning

This strawman design builds upon the existing Cactus framework instead of specifying the

development of a completely new framework. It depends on adding a new piece (DDB) instead of

developing a new coupling facility from scratch. This document was developed in cooperation with

John Shalf (Cactus), Tony Drummond (DDB), and Tom Goodale (Cactus). The actual development

and integration plans would involve continued coordination with both the Cactus and DDB teams.

Both of these plans are described briefly in the next two sections.

12.1 Software Engineering Plan for Development of the Framework

On a global scale, the software engineering plan is as follows:

1. Select Cactus as the primary framework upon which to build.

2. Strengthen the relationship with the Cactus team to enable future cooperation in adapting

Cactus to climate modeling.

3. Cooperate with the Cactus team (see Notes) in support of the goal of upgrading Cactus to

support multiple grids, latitude/longitude coordinate systems, and an abstracted messaging

layer.

4. Select DDB as the coupling mechanism to be used in the framework between the climate

models, instead of one of the other coupling packages 4[A_4].

5. Strengthen the relationship with the DDB team to enable future cooperation in adapting DDB
to work within Cactus.

6. Cooperate with the DDB team to adapt DDB to use the Cactus messaging layer.

7. Integrate DDB into Cactus to complete the framework.

8. Build upon the next release of the Cactus framework, which is likely to be release 4.1.

On a specific scale, aspects of this plan are described in the following sections.
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12.1.1 Requirements Definition

Specific requirements can be derived and extended from the Preliminary Design Briefing [l_] and

other cited documents produced by the Common Modeling Infrastructure Working Group [_8].

12.1.2 Framework Architectural Model and Interface Methods

The basic change in the Cactus architectural model is that induced by the use of multiple grids. The

Cactus team is currently developing this capability and will develop and document the interfaces.

The details of how this will be done have not yet been worked out.

12.1.3 Proposed Development Plan and Schedule

The development plan and schedule would be developed in coordination with the Cactus and DDB
teams.

12.1.4 Suggested Engineering Tools and Development Environment

The suggested engineering tools fbr this design would be those currently used by the Cactus team to

develop the framework. DDB is written primarily in C++ and C and could be extended and enhanced

using basic compiler tools.

12.2 Software Organization Plan for Integrating New Codes

12.2.1 Integration of DDB

The primary code that needs to be integrated into the Cactus framework is DDB. This will be

accomplished by coordinating activity between the Cactus team and DDB teams. This has already

occurred happenstance at Lawrence Berkley Laboratories (LBL) as John Shalf (a Cactus Developer)

and Tony Drummond (a DDB Developer) occupy adjoining offices and are talking about how this

would take place. We have talked to Prof. Mechoso [45] at UCLA about DDB as well and he has

been willing to supply information.

12.2.2 Integration of Other Codes

There are no other codes that we know of at this time that would need to be integrated to complete

the framework. As more and more climate models became users of the Cactus system, however, it

would become productive to develop special thorns of basic physics packages that the climate

models could all use. This would reduce the size of the models and increase the reliability of the
simulations.

Note 19: Assess What Climate Code Libraries Could Be Converted to Cactus Thorns

It might be worthwt:ile to develop climate thorns containing basic physics packages.

Note 20: ESMF Review Board

Establish an ESMF review board for the purpose of determining what core models would be

introduced into the framework.
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12.3 Example of Code Conversion

Complicated models are best decomposed into submodels. For example, an atmosphere model can

consist of three submodels: dynamic core, cloud, and radiation. (Both NCAR's CCM3 and NSIPP's

Aries have these three physical components.) Figure 19 shows a rough decomposition sequence. At

first a submodel is modified into a thorn so as to be exchangeable, just like a model. Then each

submodel thorn has to create three ccl files denoted with three small slabs in the figure. These ccl

files are parsed by the Cactus flesh during compilation. If the grid variables of submodels are defined

on the same grid, then submodels can perform information exchange by defining the grid variables

available to other submodels with the keyword "public" in the interface.ccl. If the data of the

submodels are not on the same grid, then a driver thorn with DDB functions is called to exchange

data between the different grids (dotted lines are used to show this alternative). The process of

exchanging data inside a driver thorn is similar to that shown in Figure ! 7.

l/

Atmosphere
Model

l _mmmnmmm

Figure 19. A Model Decomposed into Sub-Models
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Appendix A - DDB Application Programming Interface

The tables in this section contain summarized function parameters for the Model Communication

Library (MCL) functions. Once DDB is converted to run within Cactus it will be necessary for this

information to be produced from Cactus information gathered from the thorn parameter files.

A.I DDB Model Communication Library (MCL)

Tables I and 2 show parameters expected by function calls in the MCL.

Table A-I: DDB MCLStartMetaRegistration Function Parameters (See [26])

Item Description

tid Array of PVM (or MPI) TIDS for all processes that will participate in data exchange

using DDB. It is of length 'nurnTasks."

numTasks length of array 'lid'

177rnodelNarnc Name of the model. Must be of length 128 (CHARACTER*I28)

nurnLon Numbcr of longitude points. Length of array 'lonTicks'

nurnLat Nurnbcr of latitude points. Length of array 'latTicks'

nurnVert Number of altitude points. Length of array 'vertTicks'

lonTicks Longitude tick points, of length 'nurnLon'

latTicks Latitude tick points, of length 'nurnLat'

vcrtTicks Vertical tick points, of length 'nurnVcrt"

Table A-2: DDB Parameters for MCLMetaRegister, MCLRegisterProduce,

and MCLRegisterConsume Functions (See [26])

Item Description

[77varNarne Name of the variable. Of length at least 'nameLen"

narneLen Length (in characters) of the name of this variable

coordType Coordinate type; for now must be 0 (sigma coordinates)

dataType Type of the data (0-9)

varType Type of the variable. 1 = Temporary, 0 = Persistcn!

numDirns Number of dimensions. I for I D, etc.

frequency Number of simulated seconds between each production of
this variable
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A.2 DDBLinearInterpolationLibrary (LIL)

Tables 3 and 4 show function parameters expected by function calls in the linear interpolation

library.

Table A-3: DDB Parameters for LILRegisterCoordinates (See [301)

Item Description

177coordName Name of the coordinate system. Length 128

numLon Number of longitude points. Length of array qonTicks'

numLat Number of latitudc points. Length of array 'lalTicks"

ntnnVert Number of vertical points. Length of array "vertTicks"

IonTicks Longitude tick points, of length 'numLon'

latTicks Latitude tick points, of length 'numLat'

vertTicks Vertical tick points, of length 'numVerl'

Table A-4: DDB Parameters for LILRequestlnterpolatedData (See [30])

Item

177VarNamc

nameLen

coordToken

Description

Name of the variable

Length of the name

From LILRegisterCoordinates

dataType Type of data {0-9)

varType Type of variable: 0=temporary, 1=persistent

numDims Number of dimensions

lonO

numLon

lat0

Starting index (I-based) relative to IonTicks array

Number of array elements in this dimension

Starting index (i-based) relative to latTicks array

numLat Number of array elements in this dimension

vert0 Starting index (1-based) relative to vertTicks array

numVert

TickModulii

frequency

Number of array elements in this dimension

Value for moduli if wrapping is desired

Number of simulated seconds between each production of this
variable
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Appendix B - Cactus Configuration Files and Parameter File Used in Solving 3-D

Scalar Wave Equation

Cactus runs from a parameter file (with suffix .par), which specifies thorns to be activated, timestep,

total simulation time, boundary condition, grid type, data output, etc. During compilation, three

configuration files (with suffix .ccl) of each thorn are parsed with Perk generating code for argument

lists, parameters, program flow, etc.

B.I Cactus Parameter File Called wavetoy.par

# wavetoy.par - waveloy evolution with zero boundaries

ActiveThorns = "idscalarwavc timc wavctoyf77 pugh cartgrid3d pughslab ioutil ioascii"

time::dtfac = (}.5

idscalarwavc::initial_data = "gaussian"

idscalarwavc::sigma = 2.8
idscalarwavc::radius = 0

wavetoyf77::bound = "zero"

grid::type = "BySpacing'"

grid::dxyz = 0.6

driver::global_nx = 30

driver::global_ny = 30

driver::global nz = 30

cactus::cctk_itlast = 100

IOASCIl::outl D_every = 10
IOASCII: :out ID_vars = "'wavetoy::phi "

IOASCII::outinfo_every = 10
IOASCll::outinfo_vars = "wavetoy::phi "

IO: :outdir = "wavetoy f77_zero"

B.2 Cactus Interface.ccl File

# Interface definition for thorn WaveToyF77

implements: wavetoy

public:

cctk_real scalarew)lve type = GF
timelevels=3

{
phi

} "The evolved scalar field"B.1 .....................................................................................................................
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B.3 Cactus Param.cci File

# Parameter definitions for thorn WaveToyF77

private:

KEYWORD bound "Typc of boundary condition to usc"

"'none" :: "'No boundary condition"

"'flat" :: "Flat boundary condition"

"radiation" :: "'Radiation boundary condition"

"'zero" :: "Zcro boundary condition'_

} "'norlc"

B.2 Cactus Schedule.ccl File

# Schedule del]nitions for thorn WavcToy77

STORAGE: scalarcvolve

schcdulc WavcToyF77_Evolution as WaveToy_Evolution at EVOL

LANG: Fortran

SYNC: scalarevolve

} "'Evolution of 3D wave equation"

schedule WaveToyF77_Boundaries as WaveToy_Boundaries at EVOL

AFTER WaveToy Ew)lution
l
LANG: Fortran

} "Boundaries of 3D wave equation"

32 An Earth M{_leling System Software Framework Strawman Design



Appendix C - Bridging the Gap Between Climate Modeling and Object-Oriented

Design

This article, though not part of the Cactus-DDB design, is included here to provide insight into

framework issues for the climate community.

C.I Introduction

Within the scientific climate modeling community, as evidenced by multiple efforts including a

recent NASA Cooperative Agreement Notice, (Increasing lnteroperahility and Performmwe of

Grand Challenge Applications [46]), efforts by the Common Modeling Infrastructure Working

Group (CMIWG) [8] [9], and a variety of software efforts by climate researchers [41] [44] [47] [48]
[7] [4] [49] [50], there is a commonly expressed desire to improve the interoperability and coupling

of supercomputing climate models for which individual models correspond to major climate

subsystems such as atmosphere, ocean, ice, land, and so forth. There is also evidence of another

desire, largely unexpressed as such but expressed nonetheless by the character of a system of models

communicating with each other, to employ object-oriented design techniques.

At the same time, within the object-oriented software community, there is a wealth of information

[_'51][19] [59.2][24] [53] relating to the design of object-oriented applications which focuses directly

upon the nature of interrelationships between objects but which, nonetheless, provides few examples

of how to apply the techniques to scientific modeling problems.

Thus, there exists an apparent gap between the fields of climate modeling and object-oriented design

which, due to differences in terminology, differences in programming language (FORTRAN versus

Smalltalk), differences in application (mathematical relationships versus databases), and most of all,

differences in perspective in thinking about fundamental programming units (objects versus

algorithms), this apparent gap becomes a very real gap between the two fields, impeding the flow of

knowledge between them. Booch, an object-oriented designer, addresses the issue of perspective in

thinking about a complex system when he states, in a discussion on complex systems entitled

"Algorithmic versus Object-Oriented Decomposition,"

"Which is the right way to decompose a complex system - by algorithms or by objects?

Actually, this is a trick question, because the right answer is that both views are important: The

algorithmic view highlights the ordering of events, and the object-oriented view emphasizes the

agents that either cause action or are the subjects upon which these operations act. However, the fact

remains that we cannot construct a complex system in both ways simultaneously, for they are

completely orthogonal views. We must start decomposing a system either by algorithms or by
objects, and then use the resulting structure as the framework for expressing the other perspective." -

([19], p. 17).

This article seeks to bridge the real gap, made wider by differences in terminology and perspectives
of thinking about a complex computing problem, in a way which demonstrates that the true gap

between the fields of scientific modeling and object-oriented design is not so large as it may first
appear. This bridge is built according to Booch's suggestion, by looking at a thing with one

perspective in terms of a new perspective, for the purpose of assisting the climate community in

gaining a new perspective, an object-oriented perspective, for looking at their complex modeling

systems. The primary objective is to create a working vocabulary between the two fields.
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This goal is accomplished here by taking two looks:

1. Looking at a document, a definition of object-oriented application frameworks written by an
OO designer, from a climate perspective using climate model examples to illustrate the

concepts.

2. Looking at a document, a community directive generated by a climate working group

concerned with software infrastructure issues, from an object-oriented perspective

using object-oriented techniques to illustrate the solutions.

In both cases, the approach will be the same: a presentation of the document followed by a

translation into familiar concepts and terms with an emphasis upon helping the climate community

to understand and fulfill the unexpressed desire to simplify climate model coupling using object-
oriented techniques.

C.2 Looking at an Object-Oriented Application Framework Definition from a Climate

Modeling Perspective

Fayad, Schmidt, and Johnson provide an excellent description of application frameworks in the first

chapter of their recent book, Building Application Frameworks 212.4],in a section appropriately titled

"What is an Application Framework?". This section is reproduced here, with paragraph numbering

added for later reference. The subsequent section translates this definition into climate modeling
terms.

C.3 What is an Application Framework?

I. "Object-oriented (OO) application frameworks are a promising technology for reifying
proven software designs and implementations in order to reduce the cost and improve the

quality of software. A framework is a reusable, semi-complete application that can be
specialized to produce custom applications [Johnson-Foote 1988] (5[.5__4.]).In contrast to earlier

OO reuse techniques based on class libraries, frameworks are targeted for particular business

units (such as data processing or cellular communications) and application domains (such as

user interfaces or real-time avionics). Frameworks like MacApp, ET++, Interviews,

Advanced Computing Environment (ACE), Microsoft Foundation Classes (MFC's) and

Microsoft's Distributed Common Object Model (DCOM), JavaSoft's Remote Method

Invocation (RMI), and implementations of the Object Management Group's (OMG)

Common Object Request Broker Architecture (CORBA) play an increasingly important role

in contemporary software development."

2. "A framework is a reusable design of a system that describes how the system is decomposed

into a set of interacting objects. Sometimes the system is an entire application; sometimes it

is just a subsystem. The framework describes both the component objects and how these

objects interact. It describes the interface of each object and the flow of control between

them. It describes how the system's responsibilities are mapped onto its objects" [Johnson-
Foot 1988 ([54]); Wirfs-Brock 1990 ([55])].

3. "The most important part of a framework is the way that a system is divided into its

components. [Deutsch 1989]. Frameworks also reuse implementation, but that is less
important than reuse of the internal interfaces of a system and the way that its functions are

divided among its components. This high-level design is the main intellectual content of

software, and frameworks are a way to reuse it."
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4. "'Typically, a framework is implemented with an object-oriented language like C++,

Smalltalk, or Eiffel. Each object in the framework is described by an abstract class. An

abstract class is a class with no instances, so it is used only as a superclass [Wirfs-Brock 1990

([])]. An abstract class usually has at least one unimplemented operation deferred to its

subclasses. Since an abstract class has no instances, it is used as a template for creating

subclasses rather than as a template for creating objects. Frameworks use them as designs of

their components because they both define the interface of the components and provide a

skeleton that can be extended to implement the components."

5. "Some of the more recent object-oriented systems, such as Java, the Common Object Model

• (COM), and CORBA, separate interfaces from classes. In these systems, a framework can be

described in terms of interfaces. However, these systems can specify only the static aspects of

an interface, but a framework is also the collaborative model or pattern of object interaction•

Consequently, it is common for Java frameworks to have both an interface and an abstract

class defined for a component."

6. "In addition to providing an interface, an abstract class provides part of the implementation

of its subclasses. For example, a template method defines the skeleton of an algorithm in an

abstract class, deferring some of the steps to subclasses [Gamma 1995 ([,52])]. Each step is

defined as a separate method that can be redefined by a subclass, so a subclass can redefine

individual steps, of the algorithm without changing its structure. The abstract class can either

leave the individual steps unimplemented (in other words, they are abstract methods) or

provide a default implementation (in other words, they are hook methods) [Pree 1995]. A

concrete class must implement all the abstract methods of its abstract superclass and must

implement any of the hook methods. It will then be able to use all the methods it inherits

from its abstract superclass."

7. "Frameworks take advantage of all three of the distinguishing characteristics of object-

oriented programming languages: data abstraction, polymorphism, and inheritance. Like an

abstract data type, an abstract class represents an interface behind which implementations can

change. Polymorphism is the ability for a single variable or procedure parameter to take on

values of several types. Object-oriented polymorphism lets a developer mix and match

components, lets an object change its collaborators at runtime, and makes it possible to build

generic objects that can work with a wide range of components. Inheritance makes it easy to

make a new component."

13. "A framework describes the architecture of an object-oriented system, the kinds of objects in

it, and how they interact. It describes how a particular kind of program, such as a user

interface or network communication software, is decomposed into objects. It is represented

by a set of classes (usually abstract), one for each kind of object, but the interaction patterns

between objects are just as much a part of the framework as the classes."

9. "One of the characteristics of frameworks is inversion of control. Traditionally a developer

reused components from a library by writing a main program that called the components

whenever necessary. The developer decided when to call the components and was responsible

for the overall structure and flow of control of the program. In a framework, the main

program is reused, and the developer decides what is plugged into it and might even make

some new components that are plugged in. The developer's code gets called by the

framework code. The framework determines the overall structure and flow of control of the

program."
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C.4 Translation of "What is an Application Framework?" into Climate Modeling Terms

The discussion in "What is an Application Framework?" is geared towards skilled object-oriented

software developers who are familiar with the languages and terminology. Because understanding

the definition of a framework is crucial to the interpretation of the survey [34] results, this section

examines highlights from each paragraph and translates key points into climate modeling terms,

relating it, when appropriate, to recent work by the Common Model InfraStructure Working Group [8].

C.4.1 A framework is a reusable, semi-complete application that can be specialized to

produce custom applications

A framework that is reusable and semi-complete corresponds to a modeling simulation program

where the models are not specified. The framework, for example, provides basic physics routines,

structures for distribution over multiple processors and communication, file I/O, web-connectivity,

real-time steering, a means for models to communicate and share data, and many other services. A

researcher completes the application through specialization and customization: adding particular

models and specifying the desired interaction between them for a particular experiment.

C.4.2 A framework is a reusable design of a system that describes how the system is

decomposed into a set of interacting objects

The framework describes how climate models are assembled and how they interact with each other

and the framework services but it doesn't specify what the models do. The models can compute

results any way they choose. The framework is similar to an electrical system in a home that

provides a wall outlet interface ( 120 volts, 60 Hertz, two or three metal prongs, maximum of 20

Amperes) which specifies how appliances interact with the electrical system within certain

parameters (they can't have seven prongs requiring five different DC voltage levels powering a 40

megawatt climate control device) but not what they do (heater, air-conditioner, television, VCR, etc.),
how they are internally implemented, nor where they are plugged in. Thus, for a climate model

designer, having a framework specify how the system is decomposed into objects is not a major
limitation for the models.

C.4.3 The most important part of a framework is the way that a system is divided into its

components. [l]mplementation ... is less important than the reuse of the internal

interfaces of a system ....

This means that it is more important for the framework to define how the climate models interact

than what they do. The framework is responsible for the interactions between the models. The

researchers are responsible for the implementation of the models.

C4.4 Typically, a framework is implemented with an object-oriented language like C++,

Smalltalk, or Eiffel.

Because the framework concept makes a clear distinction between interaction and implementation it

is conceivable, though not common, to have a framework where model interactions and model
implementations are in different languages such as C++ and FORTRAN. It is certainly much easier

to have a single language framework but since FORTRAN does not provide several critical object-

oriented capabilities it may be easier to adopt a dual-language approach. The bottom line is that,

since the frameworks are primarily concerned with services and interactions and to the extent
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interactions and implementations can be separated, C++ frameworks do not necessarily exclude

FORTRAN model implementations. Another way of saying this is that, with careful design and

separation of implementation and interaction, researchers would not necessarily have to convert their

model code f¥om FORTRAN to a new language to use an object-oriented framework. To do so,

however, would require a clearly thought out distinction between interactions and implementations,

since a language barrier separates the two, whereas the use of a single language for both interactions

and implementations allows for a looser definition.

C.4.5 Each object in the framework is described by an abstract class, a class with no instances

[which] is used only as a superclass

For a person with a traditional structured programming background, such as FORTRAN, this

statement says a lot because of the object-oriented background required to understand it. Thus,
though the goal here is to talk about the concept of abstract class, it is important, first, to clearly

establish the concept of class using several examples.

C.4.5.1 Definition of Class

A class is a template for an object that has both data and methods and can be instantiated to create an
instance.

C.4.5.2 Example: OceanModel Class

For example, in ocean modeling, a simplified hypothetical ocean model class named OceanModel

would have two components, data and methods, where:

1, The data components would consist of arrays specifying basin perimeter, depth geometry,

and arrays of state including temperature, density, salinity, and so forth.

2. The methods component would consist of a set of subroutines having access to the data, such

as a General Circulation Model (GCM) [56] which operates upon the data to update the
internal state.

With idealized design, the ocean model class could be designed with perhaps five methods:

instantiate, load, circulate, couple, and save.

1. Instantiate(filename) would create the model object using a file with basin

perimeter and depth information.

2. Load (filename) would initialize the state in arrays using information from a file.

3. Circulate (timeAmount) would run the GCM for the specified amount of time and

then update the internal state.

4. Couple (otherModel) would exchange state information at the perimeter with another
model from the OceanModel class.

5. Save (filename) would save the state to a file on disk.

Since Niiler ([57], p. 117) notes that the continents divide the ocean into four basins (Atlantic,

Pacific, Indian, and Southern), with the OceanModel class (and assuming appropriate datasets on

disk), four model objects could be instantiated, each corresponding to a unique basin. Thus, in a

global climate simulation program, the main control loop would perform the following tasks:
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I. Send fbur Instantiate messages to the OceanModel class to create four object

instances (objects), one for each basin.

2. Send a Load message to each instance to initialize the object with a default state.

3. Send circulate and couple messages according to a pre-selected pattern.

4. Send save messages to each of the instances, thus saving the results of the run.

Thus, this example has illustrated all of the key concepts of class by demonstrating how it specifies

data and methods, how it can be instantiated to create multiple instances, and how the instances all

respond to the same message names and work together in some fashion in a global simulation run.

So this is ihe first difference between FORTRAN and an object-oriented language with classes in

that while FORTRAN has common blocks, providing a means to have common data for a set of

subroutines, it doesn't provide instam_es, corresponding to data-blocks with unique identities,

otherwise known as objects. An object is a unique block of data (an instance) that uses the same set
of methods (subroutines) as all other members of the same class from which it was instantiated.

Instantiation means that the data block is created and initialized to a particular state that, in the case

of the hypothetical ocean model, is a set of boundary conditions and a pre-specified temperature

distribution. So now, with a perspective on class, we can define abstract class.

C.4.5.3 Definition of Abstract Class

An abstract class is an incomplete class definition where the methods are specified, but one or more

have not been implemented.

For example, an t_bstractOceanModel class would define complete implementations for

instantiate, load, save, and couple, butcirculate wouldn'tdo anything.Thus,if

the previous global simulation run were to create object instances out of AbstractOceanModel

instead of OceanModel, the simulation would run very quickly but not do anything because the
circulate would not change the state of each model.

On the surface having a class with undefined methods may seem like a step backwards but actually it

is a powerful step forward. An abstract class is useful in comparison to a class in the same way (with
a twist) that a class is useful in comparison to a FORTRAN common block. A FORTRAN common

block is powerful because it lets a group of subroutines share a common set of data without having to
pass it all around between themselves. A class is more powerful because it provides a mechanism to

have multiple uniquely identified data blocks instead of just one. The twist of the abstract class,

which makes it more powerful than them all, is that it provides a mechanism to have multiple sets of

method blocks by declaring the names but leaving them unimplemented. Thus, with a class, a

researcher can create a multiplicity of objects that all share the same behavior and can talk to one

another but have different internal states but with an abstract class the researcher can additionally

modify the behaviors in select ways while still retaining the ability to have the objects communicate.

For an example in a related field, genetics is blooming because geneticists are performing gene

splicing experiments. The researchers can substitute one gene for another gene in an organism and

see how the behavior changes, whether it grows more quickly, develops immunity to disease, and so

on. Well, a single class method or a set of methods is like a gene. It can be spliced out for another set

of methods and the behavior of the object changes and scientists can observe it. That is what an

abstract class does: provides a means to splice in different behaviors.
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C.4.5.4 Examples: AbstractOceanModel Abstract Class

So, how is this useful for a climate simulation? In a discussion on ocean circulation, Niiler provides

a diagram Csee [5_.7_7],p. 123, Fig. 4.3 or similar version online by Apel [58] at [59]), of twenty-nine

different ocean current systems around the world, distributed throughout the four major ocean

basins. This picture provides an excellent backdrop for illustrating the concept with multiple

examples.

1. For the first example, suppose that it were a scientific fact that ocean circulation in the world

differed according to ocean basin and thal, in fact, it was necessary to write four completely

different types of GCM's, customized for each basin, to adequately model observed behavior.

How would this be handled in conjunction with an abstract class? Four different customized
GCM routines would be written and then four different subclasses would be derived from

OceanModeh

- At lanticOceanModel

- Pacif icOceanModel

- IndianOceanModel

- SouthernOceanModel

Each of the model classes would be very short pieces of code because the majority of the

behavior would be implemented in AbstractOceanModel, which doesn't change, and each of

the four new classes would have only one routine, a GCM implementation for circulate that

was different for each one. The global climate simulation could then be improved by

instantiating not just four objects but twenty-nine objects, each one corresponding to a

regional model where a particular current was dominant. The rest of the global simulation

code would be about the same. It would send circulate and couple messages to each of the

objects, all of the objects would know how to communicate with each other because they all

inherit from AbstractOceanModel and at the end of the run it would save twenty-nine sets of

results.

2. For the second example, suppose that new research suggests that higher performance

computing solutions could be achieved if, instead of customizing GCM's according to basin,

they were customized according to flow pattern: predominantly clockwise rotation,

counterclockwise rotation, east, west, north, or south travelling. In this case six types of

GCM's could be written and six subclasses derived from AbstractOceanModel as

before:

- ClockwiseOceanModel,

- CounterClockwiseOceanModel,

- ToEastOceanModel,

- ToWestOceanModel,

- ToNorthOceanModel,

- ToSouthOceanModel.

Now, in the main simulation loop, with only a reassigment of the twenty-nine regional

objects to different classes, the experiment can run as before, with no other changes, and

should be improved.
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3. Forthethirdexample,supposethatnewresearchthenproducesaunifyingtheoryof
circulationwhichmakesit possibletogainevenfurthersimplificationsandperformance
improvements,if theGCM'sareclassifiedaccordingtolatitude.Perhapsthis has something

to do with the amount of cloudiness and Coriolis effect. In this case three new types of
GCM's would be written and six subclasses derived from AbstractOceanModcl as before:

- Polar0ceanModel,

- MidLatitude0ceanModel,

- EquatorialOceanModel.

Finally, changing the main loop assignments again so that the twenty-nine objects now

inherit from one of the three main classes, the experiment can run as before.

4. Four the fourth example, suppose that somebody figures out a new coupling technique that

can make the coupling process happen twice as fast as before. A change is made to

AbstractOceanModel. With no other changes to any piece of code, except a recompile, this

enhancement, through inheritance, is propagated to the twenty-nine regional models and the

experiment now runs faster than before.

5. For the final example, suppose that after all the work with GCM's the community determines
that the latitude-based model is the best and that there is a common core of code that all three

customizations share. The smart thing to do would be to migrate this common core of code to

the AbstractOceanModel class, leaving behind only the specialized customizations in

each of the three subclasses, thus making them simpler and easier to work with.

Thus, saying that "each object in a.framework is described by an abstract class, a class with no

instances [which] is only used as a superclass" is a way of putting the most powerful features of

object orientation at the disposal of the researchers who implement the models. It means that as

much of the stable work as possible is implemented at the lowest possible levels in the hierarchy and

that for work which is still a topic of current research the researcher can focus on writing different

implementations of specific attributes, splicing them into the model using an abstract class, and

observing changes of behavior that improve overall modeling.

Another way to say it is, when writing code, researchers can subclass from the abstract class,

creating multiple basic class models from which they instantiate all of the instances that interact in

the simulation. They don't have to re-implement any of the code that is handled by the superclass

because all of their models inherit the behavior and pass it through inheritance. Thus an abstract

class is powerful in the same way an application is powerful: It is an incomplete piece of work that

can be reused by the researcher who needs only to fill in a particular piece. An abstract class also

provides a migration path for technology. When a field first opens up there are usually a lot of

competing theories about how things are done. The basin, flow, and latitude approaches to GCM's

don't happen sequentially, as illustrated here. Instead, these approaches may proceed in parallel at

different research labs. Eventually, however, things settle down on a standardized way to do things.

At this point, then, the stable technology migrates from the research side to the abstract class side,

thus making the abstract class more powerful, and the entire research community is now standing on

the same model platform, now a notch higher. Thus, they can move away from GCM implementation

issues and move onto other issues, such as how to integrate cloud models into the scenario. Without a

common model base that the abstract class offers, however, the community would be left instead

with three separate sets of models, each with good features, that they would somehow have to either

integrate or propagate separately.
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C.4.6 An abstract class usually has at least one unimplemented operation ...

As described before, the unimplemented operations in an abstract class correspond to functionality to

be spliced in by the researcher. Ideally, the unimplemented functionality should correspond to areas

of active research in the field where there is not yet a community consensus. The operations tor
which there is a community consensus are implemented in the abstract class.

C.4.7 Since an abstract class has no instances, it is used as a template ...

The template concept can be closely associated with the idea of a '+core model," a term used in the

CMIWG report [9] but it is not exactly the same because a core model is fully functional whereas a
template is not. Nevertheless, a template can implement the corefunctionalio, of a model without

implementing one or more model specifics. Thus, a core model can be a specific implementation
using a model template, which is really an abstract class.

C.4.8 Some of the more recent object-oriented systems, such as Java .... separate interfaces
from classes

"In these systems, a framework can be described in terms of interfaces. However, these systems can

specify only the static aspects of an interface, but a framework is also the collaborative model or

pattern of object interaction. Consequently, it is common for Java frameworks to have both an
interface and an abstract class defined for a component."

This is saying that one way of thinking about a system is as a set of static interfaces. For example, in

current climate simulation software there can be a whole set of unique interfaces: the flux co/zpler

interface, the I/O subsystem interface, etc. But a framework can be more than just an arbitrary set of

interfaces to numerous tools and components. It can be a collaborative pattern of interaction between

the models, a common way of communicating between participants in the simulation, which is a

much more powerful thing because the researchers writing code, once they've learned the pattern, do

not have to learn and master new interfaces every time a new model or component is introduced.

Thel collaborative pattern of interaction between the models in the previous examples was the set of

five messages: instantiate, load, circulate, couple, and save. Those five messages constitute the interface

to any of the dozens of possible models that arise from the same abstract class. It is collaborative

because all subclasses use that pattern and, knowing that they all use it, can use it tOcommunicate

between themselves with couple messages because they all support the same protocol.

Without collaboration in messages and behavior, a "framework," consisting of a set of interfaces to
multiple components, becomes more complex and unwieldy as more components are added. Some

cloud researcher can't just walk into the field and (quickly learning the vocabulary of instantiate,

load, save, circulate, and couple) make a contribution to the field by implementing some new

specialized feature that the community needs. Instead, he or she must learn an entire set of interfaces

and conventions before daring to make a single change; thus, the multiplicity of interfaces provides a

barrier to science encroaching from without as well as from within.

A real framework, on the other hand, with a well-designed collaborative communication pattern,

stays simple even as the number of components and interactions increases. This is important to the

climate community because the number of models involved in coupling operations in climate
simulations is steadily increasing. Without proper framework design, the researchers will have to
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beartheburdenof learningall thenewinterfacesbeforetheycanassembleasimulation.Witha
framework,thefocuscanremainontheareasofcurrentresearchwithinthecommunity.

C.4.9 in addition to providing an interface, an abstract class provides part of the

implementation of its subclasses ...

The primary way of defining an interface in an object-oriented system is through an abstract class

definition. That is why it is difficult to replicate this concept in languages such as FORTRAN which
lack inheritance.

C.4.10 Frameworks take advantage of all three of the distinguishing characteristics of object-

oriented programming languages: data abstraction, polymorphism, and inheritance

Each of these characteristics is important to scientific work because it provides a way to simplify
implementations. Inheritance is probably the most important because that is the way to propagate
interfaces.

C.4.11 A framework describes the architecture of an object-oriented system ...

As said before, the framework defines the pattern of collaboration, separate from implementation, as
the architecture.

C.4.12 One of the characteristics of frameworks is inversion of control. Traditionally a

developer reused components from a library by writing a main program that called the

components whenever necessary. In a framework, the main program is reused, and the

developer decides what is plugged into it.

In current climate simulations it is the researcher who writes the main program routine. The main

routine is usually short and contains loops that run models for certain periods and then couples them

with other models. What this sentence is saying is that the framework assumes responsibility for the

main routine. The framework still has to provide a mechanism to specify how often each model is

run and how regularly it couples, but the researcher is relieved of the implementation responsibility

because the main routine is written by somebody else.

To see how this is done, notice in the example regarding the abstract class that the problem that the

researcher was really solving was that of trying to figure out the best set of GCM's to map onto all

twenty-nine currents where best involved speed of execution and accuracy of results compared to

observations. The only thing that was in question was one set of behaviors versus another. So why

was it necessary to modify the main loop every time a new subclass was created? Well, ideally it

isn't. Ideally, the researcher should just be able to create an ASCII input file for each run that has

twenty-nine lines, one for each region of current, where each line has the following pieces of
information:

• The name of the current region of the map ([57], p. 123, Fig 4.3).

• The name of the subclass that contains the GCM the researcher wants to use to model that

region.

• The name of a data file that contains all of the initialization information for each region.

• A weighting parameter that says how often coupling is required for that region. This would

allow a researcher, for example, to specify a higher coupling frequency for adjacent models

for fast moving currents like the Agulhas Current of the coast of South Africa ([57], p. 121,

current number 16 on map) and slower coupling frequency for other currents.
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Then,atthestartthemainloopcanreadtheinputfile to automaticallyfigureoutwhatclassesto
instantiateeachmodelfromandhowfrequentlytocouplethem,runthemodelsaccordingto
schedule,andgenerateoutputfiles.Now,insteadof havingtorewritethemainloopeachtimeand
recompiletheapplication,theresearchercanfrequentlyjustmanuallyedittheinputfileandrerun
theapplication.

Theideaof inversionof controlisusedinapplicationframeworksformostGUI-basedapplications
wherethedeveloperdoesn'tworryaboutinterceptingmouse-clicksandsendingthemtotheright
window- thisisall handledbytheframework.Thedeveloperisfreetosayhoweachwindow
respondswhentheframeworktapsit ontheshoulder.Thisconceptismorein linewithhowa
climatesimulationwouldwork.

Withthemainloopincontrolof theframeworkinsteadof theresearcher,manyothercapabilitiescan
beofferedaswell.A listof capabilitieswouldincludewebaccesstocode,remotesteering,load
balancing,scheduling,andotherfeatures,all in themainroutine,withoutforcingtheresearcherto
learnhowtodothesethings.

Howwouldwebaccessbeimplemented?Simple.FirsttheAbstractOceanModelclasswouldbe
modified(byasupportprogrammer,inconsultationwiththeresearcher)toaddanhtmlStatemethod
thatwouldcausethemodel to respond to the message by returning a large HTML (see [60]) string

which described the current state of the model in an appropriate level of detail. Second, the main

loop of the framework (without the consultation of the researcher) would be modified to respond as a

server (see [61]) to requests coming over the web. From that point on any scientist, regardless of how

the model was implemented, so long as it inherited from the abstract class, would be able to inspect

the current state of any model in a running program using a web browser.

This type of capability is already being implemented with the CACTUS framework 12.], which on the

CACTUS homepage provides a web connection to a running computing application. How did the),

do this? They did it using inversion of control. The CACTUS framework, not the researcher,

provides the main scheduling loop. Thus, the team responsible for framework development can

provide web capabilities without forcing the researchers to build it into their code.

Without inversion of control, to obtain web access, not only does a researcher have to be an expert in

numerous areas of physics and modeling, but will have to continually acquire new skills in HTML,

CGl-programming, and so on, figure out how to implement the technology in FORTRAN, and then
build these technologies manually into every model from then on, thus shifting focus away from

science and toward the interactions of the models. With inversion of control, many new capabilities

can be added by nonscientists and appended to current scientific models that use the framework.

C.5 Looking at a Climate Community Software Document from an Object-Oriented
Perspective

The Common Modeling Infrastructure Working Group (CMIWG) [62] [8] was formed in 1998 by

major U.S. atmospheric modeling efforts "to organize a framework and determine standards that will

allow us to move ahead toward a common modeling infrastructure." This group, at a workshop at

NCEP [23] on Aug 5-6, 1998, issued a report [9] of their discussions. The next section reproduces

recommendations and requirements from that document. The subsequent section looks at these

requirements in object-oriented terms.
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C.6

44

Recommendations and Definitions

I. Recommendation:

"The common modeling infrastructure can be advanced by establishing modeling standards

and guiding principles and by focusing efforts on the development of a finite number of core

models, each of which would be devoted to a major modeling thrust - numerical weather

prediction, seasonal to interannual prediction, decadal variability, etc."

:2. Recommendation:

'+As the U.S. organization with responsibility for the national operational forecasts, and

because of its critical data assimilation activities, the National Centers for Environmental

Prediction (NCEP) should be one of the centers associated with a core model and promoting

the common modeling infrastructure. NCEP can do so only if provided with significant new

human and computational resources."

3. Recommendation:

+'Workshop participants unanimously agree that global atmospheric model development and

application for climate and weather in the U.S. should be based on a common modeling

infrastructure. In addition, there should be core models, which not only follow the

infrastructure but advance it. +'

. Definition of "Core Model":

(a) "A core model should be devoted to a focused modeling problem which would benefit

from broad community involvement and should be associated with a facility whose mission is

directly related to that problem. However, each core model should not be restricted to a single

activity. They would benefit by application to a broader class of problems than the primary

mission of the facility. Three relevant problems areas are Numerical Weather Prediction,

Seasonal to Interannual (S-I) variability, and Decadal/Greenhouse (D/G) type modeling.

There are natural alliances between NWP and S-I, and between S-I and D/G which should

lead to the multiple applications."

(b) "The core models should be based on the flexible common model infrastructure, and

allow a range of options for different physical problems, with standard configurations defined

for operational applications (via resolution and parameterizations), e.g., medium range

forecast, centennial climate scenarios, seasonal predictions. These configurations represent

the primary development path and provide the controls upon which improvements can be

tested. The standard configuration for a particular application differs from other standard

configurations only when justified by that application. Development and applications must

map back to new standard configurations at appropriate times. Data assimilation research for

both weather forecasting and climate analyses is also important. Data assimilation could be

later added to the model infrastructure if cast in a reanalysis mode."

Ic) "'In development and application, ideally each core model should involve a significant

number of modeling groups concentrating on a variety of applications such as climate

simulation, data analysis, and medium range to seasonal prediction applications."

(d) "More than one core model is specifically called for above because many systems are

similarly skillful but give different results. Experience of weather forecasters and with

climate simulations has shown that the variety of results produced by several models is

beneficial in interpreting those results for the problem at hand, and for giving the best

forecasts through ensemble averaging."
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5. Recommendation:

We recommend the establishment of a flexible modeling infrastructure that will facilitate the

exchange of technology between operational and research, weather and climate modeling

groups within the U.S. We further recommend that such an infrastructure be incorporated in

national computing initiatives on atmospheric modeling and prediction.

6. Justification:

We note that for such an effort to have an impact on the nation's NWP capability, NCEP
should be one of the centers associated with this infrastructure and a core model. To do so,

there must be strong modeling development and technology transition for both weather and

climate at NCEP. This will require substantial increases in human and computing resources at

NCEP. Without such increases, which will allow NCEP's vigorous collaboration in a core

model-, modeling advances promoted by the proposed framework will have only marginal

impact on operational capabilities. If it is to succeed, a cooperative arrangement between

NCEP and the research community would need strong support from NOAA Administration at

the topmost levels down to the level of scientists involved in the project, as well as from the

agencies sponsoring climate research. Stable, long-term base funding is required to support

the commitment to a core model. Such stability is not provided by proposal driven funding.

If members of the research community are to contribute at a more applied level, they also

require stable funding over periods longer than associated with typical proposal awards.

7. Approach for Developing "Core Models":

To develop a flexible infrastructure for global model development with core models linked to

a wide range of specialized applications. The core models would provide a set of controls

against which proposed incremental improvements could be tested. The core models would

be updated periodically to include successful improvements under the auspices of a scientific

steering committee. The research community would have access to the core models and

would participate actively in the development effort. The goals of this activity would be

• To accelerate progress in global NWP and climate prediction development in this country.

• To provide a focal point and shared infrastructure for forecast (NWP and climate) model

development and a testbed for physical parameterization schemes.

The workshop participants agreed unanimously that an operational NWP center must be

included in at least one of these core models. That center is obviously the one responsible for
civilian operational NWP in the U.S. (NCEP). It is absolutely essential for the operational

centers to have a capable modeling development and technology transition component, which

allows them to adapt and improve incoming models or algorithms. Therefore, a commitment

of funding sufficient for ensuring the viability of the NCEP NWP development effort is a

prerequisite for a successful cooperative effort.

8. Infrastructure Required for Developing "Core Models":

Infrastructure connotes more than shared, facilities, staff and funding. It includes a sense of

distributed ownership of the core model and a shared heritage (documentation, journal

publications, oral tradition) that surrounds it. As mentioned above, the infrastructure
associated with a core model needs to be concentrated at a center. Access to the facilities of

such a center would be an incentive for researchers to become involved .... It is difficult for a

complete data assimilation system to be run offsite because of the additional codes necessary

for observation processing, quality control, analysis and diagnosis. However, a reanalysis
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mode based on canned data is feasible for offsite use, although code maintenance is an

additional burden. Many, but not all, data assimilation research problems may be amenable to

such an approach, at least initially. Such a facility could bring nonoperational center

researchers back into the data assimilation problem. Running climate configured models in

reanalysis mode is also an extremely useful test of the models. Candidates for core model
code must be based on well-defined code standards which are strictly enforced. The standards

should be designed to facilitate the goals of the common model infrastructure while avoiding

legislating elements of coding detail or style that are irrelevant. Developing such standards

will be challenging. The code must be of modular design and be effectively commented. It

must be straightforward to add new diagnostics to model output, and to implement new

parameterizations. The model algorithms must be well documented, and a User's Guide must

be provided. The code should be portable to several machines, but not necessarily every
machine in existence. Experience with GFDL Modular Ocean Model and elsewhere has

shown that with directives code can run on multiple platforms. Running on different

machines with different compilers helps identify problems. The center requires a

supercomputer for operational NWP use and/or for very long production climate scenario

simulations. Ideally, the code should also run on workstations. This opens up the code to a

large community of researchers for exploratory work as experienced in the NCAR
Community Climate Model. However, the code must be optimized on the production NWP

platform to meet operational constraints. Optimization is less critical on experimental

platforms. A center should, actively reach out to computer science groups interested in

working on problems related to multiple platforms and optimization.

C.7 Translation into Object-Oriented Terms

C.7. I The common modeling infrastructure can be advanced by establishing modeling

standards and guiding principles ...

This means establishing a community framework based on the principles of interaction among

models. This can he accomplished using an object-oriented approach. Other definitions include the

following:

"... and by focusing efforts on the development of a finite number of core models...."

For each model, this means the development of an abstract class with a particular implementation of

a subclass as the currently designated "'core model."

"... each of which would be devoted to a major modeling thrust - numerical weather

prediction, seasonal to interannual prediction, decadal variability, etc."

This means that the abstract classes mentioned previously all inherit from another abstract class

which can be specialized according to model type.

Thus the type of framework that is being described here has at least 3 levels in the inheritance

hierarchy:

1. A base abstract class which can be specialized and customized according to model type,

2. A set of abstract classes, one for each type.

3. For each model type, at least one subclass implementation, designated as a core model.
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C.7.2 As the U.S. organization with responsibility for the national operational forecasts, and
because of its critical data assimilation activities, the National Centers for

Environmental Prediction (NCEP) should be one of the centers associated with a core

model and promoting the common modeling infrastructure.

This sentence has both political and technical components. The political component, whether or not

NCEP is the appropriate center for this work, is not related to the topic of this discussion. The

technical component includes the following ideas:

• Some organization must be designated as a support/development center for the framework. It

makes sense to have an operational center do this job because they would be the most

interested in speed and would therefore be most willing to find and develop high-

performance communication mechanisms for the base objects.

• Some organization must be associated with each core model. This is interpreted to mean that

some organization must be associated with each abstract class upon which each core model is

built. The potential exists to have a different organization responsible for each model or class
of model.

This arrangement would naturally lead to a promotion of the modeling infrastructure. The

operational center would be naturally interested in high-speed and current technology so they are

naturally motivated to develop a high-performance base class with an interface that could easily be
specialized to different model types. Various research centers around the country would be interested

in being responsible for various model subtypes and a core model, while maintaining a flexible

interface to encourage related research in their specialty area. As capabilities matured, technology

would stabilize and flow from the research centers to the operational center, where the base model

abstract class increased in strength, while the research centers moved ahead in newer areas.

C .7.3

This is

1.

Workshop participants unanimously agree that global atmospheric model development

and application for climate and weather in the U.S. should be based on a common

modeling infrastructure. In addition, there should be core models, which not only follow
the infrastructure but advance it.

another call for a framework and base classes. Related ideas include the following:

"A core model should be devoted to a focused modeling problem which would benefit from

broad community involvement and should be associated with a facility whose mission is

directly related to that problem...."

In other words, each facility should be responsible for (1) an abstract class, and (2) a subclass

from the abstract class which is designated as core "core model."

2. "... However, each core model should not be restricted to a single activity. They would benefit

by application to a broader class of problems than the primary mission of the facility...."

This requirement is met through proper design of the abstract classes, allowing for multiple

types of models and multiple sets of methods to be spliced in to allow for the broader class of

problems.

3. "...Three relevant problems areas are Numerical Weather Prediction, Seasonal to Interannual
(S-I) variability, and Decadal/Greenhouse (D/G) type modeling. There are natural alliances

between NWP and S-I, and between S-I and D/G which should lead to the multiple

applications."
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Thecharacteristicsof these models determine the tint stage design for the abstract classes.

4. "The core models should be based on the flexible common model infrastructure, and allow a

range of options for different physical problems, with standard configurations defined for

operational applications (via resolution and parameterizations), e.g., medium-range forecast,

centennial climate scenarios, seasonal predictions."

The abstract classes for the core models should all inherit from a base class and allow a range

of options through specified but unimplemented operations for various applications.

5. "'These configurations represent the primary development path and provide the controls upon

which improvements can be tested"

A testing capability can be implemented into the framework.

6. "The standard configuration for a particular application differs from other standard

configurations only when justified by that application."

There should not be a proliferation of abstract base classes.

7. "Development and applications must map back to new standard configurations at appropriate
times."

This mapping is accomplished by using the infrastructure. If a model built upon an abstract

class demonstrates consistently better performance than the core model which inherits from

the same abstract class, it can always be designated as the new core model. The real issue

then is organization: If the improved model is developed outside the organization responsible

for the abstract base class, who assumes the new core model, the operational center

responsible for the base class or the organization responsible for the development of the new

core model? Or should the base class be enhanced, implementing technology from the new

model? This should be decided upon the basis of what yields the best stability for the
community.

8. "In development and application, ideally each core model should involve a significant

number of modeling groups concentrating on a variety of applications such as climate

simulation, data analysis, and medium-range to seasonal prediction applications."

It is important to agree upon a set of methods to be implemented in the base class from which

the core model is built. That is why having group participation in the base class is important.

9. "'More than one core model is specifically called for above because many systems are
similarly skillful but give different results. Experience of weather forecasters and with

climate simulations has shown that the variety of results produced by several models is

beneficial in interpreting those results for the problem at hand, and for giving the best

lorecasts through ensemble averaging."

The meat of what is requested here is provided for perfectly by an object-oriented solution.

The scientists want to have multiple model subclasses all based from the same abstract class

that perform the same type of scientific function but use different physical assumptions and

computations. They want this to allow them to bound and interpret results. This is the same,

using an early example, as having one ocean model based on latitude-oriented GCM's,
another based on flow-direction GCM's, and another based on basin-oriented GCM's, where

they want to have three models run the same data and get the same outputs. This is best
accomplished by having the same interface.
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C.7.4

Thisis

We recommend the establishment of a flexible modeling infrastructure that will

facilitate the exchange of technology between operational and research, weather and

climate modeling groups within the U.S. We further recommend that such an

infrastructure be incorporated in national computing initiatives on atmospheric

modeling and prediction.

another call for a framework.

C.7.5 Stable, long-term base funding is required to support the commitment to a core model.
Such stability is not provided by proposal driven funding. If members of the research

community are to contribute at a more applied level, they also require stable funding

over periods longer than associated with typical proposal awards.

This is a crucial element. The entire community depends upon a framework the way the national

economy depends upon the Federal Reserve Bank [63]. The Fed can't be turned off and on without

having a severe national impact. This contrasts with other local or regional government agencies

which can lose funding with lesser impacts. Funding for framework can't be treated the same way as

funding for individual models. For a community to commit to using a framework it is first necessary

for the funding agency to commit to long-term framework support.

C.8 Summary

These two framework views, one from an object-oriented perspective looking at climate issues, and

the other from a climate perspective looking at object-oriented technology, provide a bridge between

the two worlds in terms of concepts and terminology. We hope this will lead to better understanding

and architecture for the next generation climate-modeling framework.
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